
VGRID: A Generic, Dynamic HDFS Storage Model for Georeferenced,
Grid Data

Chad A. Steed
Naval Research Laboratory

1005 Balch Blvd.
Stennis Space Center, MS 39529-5001

csteed@nrlssc.navy.mil

James E. Braud
The Naval Oceanographic Office

1003 Balch Blvd.
Stennis Space Center, MS 39529-5001

braudj@navo.navy.mil

Absrracr-This paper describes the Variable resolution GRID
(VCRID) storage model designed tu support the storage and
retrieval of bathymetric data collected through the Precision
Underwater MApping (PUMA) System using the Tactical
Environmental Data Sewer (TEDS) and the Naval
Oceanographic Office’s (NAVOCEANO) Digital Bathymetric
Data Base - Variable (DBDB-V) Resolution product. Sponsored
by the Space and Naval Warfare Systems Command (SPAWAR,
PMW-155), PUMA-TEDS represents a significant advancement
in the collection and assimilation of environmental data at
global, regional or local levels. Although VGRlD has been
developed for PUMA bathymetry, its generic implementation
makes it suitable for use with any type of environmental data
grid through the definition of a product specification.

Built on NCSA’s Hierarcbical Data Format version 5
(HDFS), the VGRlD model inherits the HDF5 file format and
library implementation that is optimized for large-scale
scientific data storage. The VGRID model provides a hierarchy
of environmental storage objects: files, constituents, and grids.
A VGRlD file can contain VGRlD constituents enabling multi-
parameter data storage. VGRID Constituents can contain
VGRlD grids that are identified by resolutions and have grid
increments specified in arc minutes, meters, or polar
stereographic grid units. The grid interface supports the
storage of geographic, polar stereographic, Universal
Transverse Mercator (UTM), and Universal Polar
Stereographic (UPS) projected grids. Behind the scenes of the
VGRlD API, a tile scheme is applied tu data written to the
VGRID file. When VGRlD grids are created, compression
options can be set for aU tiles created in the resolution. The
VGRlD tile scheme provides the framework for a robust tile
caching mechanism, which minimizes the time required tu read
data from a VGRID fie.

The VGRlD API uses a “bounce” algorithm tu search each
resolution and extract the highest resolution data for a point
query. In addition, three interpolation options are available for
point queries: nearest neighbor, bilinear, and minimum
curvature spline. The minimum curvsture spline algurithm
provides a “feathering” capability that effectively reduces the
artifacts that often occur at the resolution boundaries of
multiple resolution datasets.

Kim A. Koehler
Neptune Sciences, Inc.

4301 Pacific Hwy.
San Diego, CA 921 10-3127

kim.koehler@navy.mil

Tu support the dynamic nature of the PUMA-TEDS system,
the concept of eo-existing supplemental and historical VGRID
files has been developed tu support near real-time enhancements
tu the principle database product. Tu preserve the generic
storage model, the supplementary file concept is nut included in
the VGRID specification but is left fur implementation at the
product specification level. Investigation of the PUMA-TEDS
DBDB-V model provides valuable insight into the dynamic
possibilities of the VGRID file model.

1. INTRODUCTION

The Variable resolution GRID (VGRID) file format
provides a generic, geo-spatial interface to the National
Center for Supercomputing Applications’ (NCSA)
Hierarchical Data Format version 5 (HDF5). The
development of VGRlD is motivated by the need for a
common grid tile format to store and retrieve bathymetric
data collected by the Precision Undetwater MApping
(PUMA) forward-looking sonar system using the Tactical
Environmental Data Server (TEDS) and the Naval
Oceanographic Office’s (NAVOCEANO) Digital
Bathymetric Data Base - Variable (DBDB-V) resolution
product.

Sponsored by the Space and Naval Warfare Systems
Command (SPAWAR, PMW-IS) , PUMA-TEDS represents
a significant advancement in the ability of tactical platforms
to collect and assimilate environmental data at global,
regional or local levels of operation. In essence, PUMA-
TEDS .and other Through-The-Sensors (TTS) developments
transform tactical platforms into capable survey vessels with
near-immediate capabilities for analyzing collected data.

By hamessing the powerful grid storage features of
HDFS, VGRID provides a hierarchy of storage objects for
intuitive, geo-spatial data storage. As the top level of the
object hierarchy, a VGRID file is created with the VGRlD
Application Programmer’s Interface (API). Providing the
next level of the hierarchy, VGRlD constituents represent an
intermediate level of abstraction between VGRlD files and

0-7803-7534-3/$10.0002002 IEEE 900

mailto:csteed@nrlssc.navy.mil
mailto:braudj@navo.navy.mil
mailto:kim.koehler@navy.mil

the data grids. Finally, VGRlD grids are created under
constituents and provide the data storage structure for the
VGRlD data model.

In order to improve access to file contents, VGRID
provides several intemal mechanisms that rely on the HDFS
“chunking” interface. Using the “chunking” mechanism,
VGRlD implements a sophisticated tiling scheme where the
atomic unit of storage and retrieval is the tile structure. Other
optimizations in the VGRID API, such as tile caching and tile
coverage bitmaps, significantly enhance the efficiency of the
data extraction function provided by the VGRlD constituent
interface. In addition, the VGRlD grid interface offers
compression options to provide efficient data storage and
reduced file 110.

In such dynamic projects such as PUMA-TEDS, the
development of an efficient, comprehensive grid file format
is crucial to the success of the system. Analysis of the role
VGRlD plays in the PUMA-TEDS system reinforces the
suitability of the VGRID file format and APl as a powerful,
generic solution for environmental grid products, especially
those that will be used in Through-The-Sensors architectures.

Developed and maintained by the National Center for
Supercomputing Applications (NCSA) at the University of
Illinois at Urbana-Champaign, HDFS is a data format
specification with supporting library implementation that
addresses both the limitations of the older HDF product,
HDF4.x, and the current and anticipated requirements of
modem systems and applications. In addition to the HDF 4.x
improvements, HDFS developers have built on the lessons
learned by similar scientific data formats such as netCDF,
PDB, AIO, and MPI-IO.

One of the most significant improvements introduced with
HDFS is the capability to store files larger than 2 gigabytes
and an unlimited number of objects per file (HDF4.x is
limited to 20,000 objects). HDFS also provides a simpler,
more comprehensive data model that is based on two basic
data structures: a multi-dimensional array of record
structures (dataset), and a grouping structure. The new HDFS
API is better engineered than its predecessor with improved
support for parallel input I output, threads, and other
requirements imposed by modem systems.

In the hierarchical data model imposed by HDFS, groups
and datasets are the primary building blocks. A HDFS group
is an organizational structure that contains instances of zero
or more groups or datasets while a HDFS dataset is a multi-
dimensional array of data elements. Both groups and datasets
can be stored with supporting metadata. Similar to the UNIX
interface for working with files and directories, HDFS objects
are referenced by their full (or absolute) path names through
the HDFS API and utilities.

To support custom metadata needs, HDFS groups and
datasets may have an associated attribute list. Used to
describe the nature andor the intended usage of a HDFS
object, attributes are small named datasets that are attached to
primaly datasets, groups or named datatypes. An attribute is
composed of a value element that contains one or more data
entries of the same datatype and a name element that provides

11. HDFS

~

901

a secondary means of referencing the attribute. When
accessing attributes, they can be identified by name or by an
index value [5] .

Fig. I . HDFS “Chunking” Feature

B. HDF5 Chunking
The HDFS format offers several storage layout options for

customizing the logical storage of a HDFS dataset. The
default storage layout, the contiguous option, forces data to
be stored in the same linear fashion that it is organized in
memory. For small amounts of data, the compact storage
option is useful since data can be stored directly in the object
header (compact storage is not yet supported in the HDFS
library).

Perhaps the most powe&l storage option is HDFS’s
chunked layout option that partitions the dataset into equal-
sized “chunks” that are stored separately in the file (see
Figure 1). The chunking mechanism makes it possible to
achieve good performance when accessing subsets of the
dataset, even when the subset to be chosen is orthogonal to
the normal storage order of the dataset. The blocked layout
of a chunked dataset also makes it possible to compress large
datasets and still achieve good performance when accessing
subsets. With chunking enabled, the dimensions of a dataset
can be efficiently extended in any direction and filters can be
defined to operate on the chunks of datasets as they are read
and before they are written to files. HDFS provides a robust
intemal manager for the chunking mechanism where
individual chunks are not allocated for a dataset until data is
wrilten to the chunk. Read operations in areas of the dataset
where the chunk has not been allocated return a user-defined
fill value [4].

B. HDF5 File Families
Because HDFS files can become quite large, HDFS

provides a file family mechanism to split a HDFS file address
space across several smaller files, called file family members.
This feature is particularly useful on systems that do not
support files larger than 2 gigabytes. In HDFS file families,
each member of the family is the same logical size, though
the size and disk storage reported by the file system listing
tools may be substantially smaller. The name passed to the
HDFS file create or open function should include a printf(3c)-
style integer format specifier that will be replaced with a
family member number [4]. The first family member is
numbered zero (0) and is created automatically when the file
is created. New family members are added as needed by the
file API.

C. HDFS Filters
HDFS allows chunked data to pass through user-defined

filters on the way to or from the disk. As depicted in Figure
2, HDFS filters operate on the blocks of a chunked dataset
and can be arranged in a pipeline so output of one filter

becomes the input of the next filter. Each filter has a two-
byte identification number allocated by NCSA and can also
be passed application-defined integer resources to control its
behavior.

P ilter P peline

c h u n k
,
3

Fig. 2. HDFS Filler Pipeline

Two types of filters can be applied to raw data IiO:
permanent filters and transient filters. The permanent filter
pipeline is defined when the dataset is created while the
transient pipeline is defined for each IiO operation. During
writes to the HDFS dataset, the transient filters are applied
first in the order defined and then the permanent filters are
applied in the order defined. For a read operation, the
opposite order is used: permanent filters in reverse order,
then transient filters in reverse order. Each tilter is bi-
directional, handling both input and output to the file, and a
flag is passed to the filter to indicate the direction. In either
case, the filter reads a chunk of data from a buffer, usually
performs some sort of transformation on the data, places the
result in the same or new buffer, and returns the buffer
pointer and size to the calling function [4].

111. VGRID OBJECTS

The VGRID file format is designed to provide a high-
level, geo-spatial interface for HDFS formatted files.
Retaining HDFS’s hierarchical structure, VGRID uses the
HDFS group and dataset objects as the primary building
blocks for its three main components: files, constituents, and
grids.

File
i.e. DBDB-V, GDB-V

Constituents
Le. Bithy, AICYRP)

Paramden

Grids
i.e. 5 minute, Zminute

50 meter, I meter

Coordinate System Dst i~e t
i.e. geodetic, UTM, UPS

Fig 3 VGRlD Oblect Hierarchy

A . VGRID Files
As the root of the VGRID object hierarchy (see Figure 3);

VGRlD files are created through the VGRlD API as either
single HDFS files or as HDFS file families. In addition to the
basic methods for creating, opening and closing a VGRlD
file, the VGRID API provides support methods for querying
file information such as the properties for each constituent
stored in a file.

If a VGRlD file is successfully created or opened, the
VGRID API returns a positive integer value that is used to
reference the file in other API methods. Since the VGRlD
file identifier is actually a copy of the HDFS identifier, it can
also be used with HDFS API functions to store product
specific data outside the VGRID storage stmcture. For
example, a custom header providing metadata for the file can
be directly written to the VGRID file by using the HDFS
attribute interface with the VGRIDMDFS file identifier.
Although VGRID provides no direct means of accessing such
custom data elements, product specific methods can be
written to directly access the additional file data through the
HDFS interface.

E. VGRlD Constituents
As members of VGRID file objects, VGRID constituents

are designed to represent the individual elements of a data
product as separate entities in a common file. The constituent
interface provides an additional level of data abstraction to
the VGRlD grid organization that is inherited from VGRID’s
predecessor file format, DBDB-V version 4.0. In the new
DBDB-V VGRID implementation, one constituent is created
to store the seafloor depth measurements and two other
constituents are created to store the error estimates for each
depth [see Figure 4). Although the previous version of the
DBDB-V file format provided the capability to store more
than one data element for each grid cell, it lacked the
expandability of the constituent interface. With the VGRlD
file format, the need to add a new data element to the tile is
easily accommodated by creating and populating a new file
constituent. However, an equivalent expansion of the
previous DBDB-V file format requires extensive changes to
both the DBDB-V API and the file structure.

The constituent interface is also useful for separating
different versions of the same data type into separate portions
of a common file. Recalling the DBDB-V example above,
the NAVOCEANO-certified ocean floor depths can be stored
in one constituent while another constituent can be used to
store real-time depth measurements from a survey vessel. By
merging the data from each constituent, the void areas in the
real-time dataset can be filled with the historical data to
obtain a complete chart of an area of interest while onboard
the survey vessel.

When a VGRlD constituent is created using the VGRlD
API, a HDFS group is created in the VGRID file and general
metadata for the constituent is stored as HDFS attributes.
The VGRlD constituent creation method accepts a
constituent name and the NULL value flag that will be used
for all data stored in the constituent. Similar to the VGRlD
file interface, the VGRlD API returns the HDFS group
identifier for each constituent that is opened or created

,

902

successfully. Consequently, the constituent identifier can he
used to fulfill custom data storage needs that are not
specifically addressed by the VGRlD API by directly
accessing the file through the HDFS API.

S

Fig. 4. NAVOCEANO's DBDB-V in V G N D

To provide access to the data stored in a constituent, the
VGRlD API provides a point extraction function that returns
the best (meaning highest resolution) data value for a specific
point of a constituent in the database. The finest grid
resolution and coarsest grid resolution extraction properties
can be adjusted to control the range of grids that will be
searched for the requested point. Beginning with the finest
grid resolution setting, the point extraction algorithm searches
each grid for the requested point until it finds a non-NULL
value or the coarsest grid has been searched. If a non-NULL
point is found it is returned and the algorithm immediately
ends the search but if no non-NULL data is found the
algorithm returns the error code that indicates no data exists
for the request point.

The VGRID point extraction method offers nearest
neighbor, bilinear, and minimum curvature spline
interpolation options. If the nearest neighbor interpolation
option is chosen, the grid value closest to the requested point
is returned along with the coordinates where the grid value is
stored in the database. For the other interpolators, the
coordinates for the point returned will be the coordinates of
the requested point. The transition latitude extraction
parameter can also he modified to control point extractions in
the overlap zone in the round-earth grid system. A detailed
explanation of the transition latitude parameter is given in the
following section on the VGRlD Grid interface.

C. VGRID Grids
As the low-level public data storage object (see Fig. 3),

VGRlD grids are created and stored under the constituent
level of the object hierarchy. Distinguished by its resolution,
each grid must be unique to the constituent in which it is
stored. For example, if a 5-minute resolution grid is created
for a VGRID file in a particular constituent, only one 5-
minute grid is allowed in the constituent.

The grid resolution is quantified with one of three
available units of measurement when it is created through the
VGRlD API: meters, minutes of arc, or polar stereographic
grid units. The units of the grid increment are used to

~

903

determine whether the flat-earth or round-earth grid system
will be used to store data in the grid. Using minutes of arc or
polar stereographic grid units enables a round-earth grid
system, but using meter-based units for the grid resolution
activates the flat-earth grid system.

Fig. 5 . UTM and UPS Zones for NIMA's MGRS

Based on the projection systems of the National Imaging
and Mapping Agency's (NIMA) Military Grid Reference
System (MGRS), the flat-earth grid system provides global
data storage in a meters-based frame of reference [2]. In
order to provide global coverage with minimal distortion, the
flat-earth option uses two Universal Polar Stereographic
(UPS) grids, one for each polar region, and a Universal
Transverse Mercator (UTM) grid system from 84 N to 80 S
(see Figure 5) . The flat earth grid system storcs one tiled grid
for each of the 60 UTM zones and for each UPS polar region
for a total of 62 data grids per flat-earth grid object [3].
Although VGRID does not impose restrictions on the use of
the flat-earth grid system, it is best suited to large-scale
datasets with regional coverage [91.

Based on the coordinate systems of the DBDB-V 4.x
HDFS file format, the round-earth grid system provides two
polar stereographic grids, one for each polar region, and an
equatorial grid that is based on geographic
(latitude/longitude) coordinates. VGRID stores one tiled grid
for the equatorial grid and each of the polar grids for a total
of 3 grids per round-earth grid object. By default, the
equatorial region of the round earth system extends from 72
N to 72 S and the polar regions extend from 64 N to 90 N and
from 64 S to 90 S at the north and south poles, respectively
(see Figure 6) [6].

Accessible through the constituent interface, the transition
latitude property controls both the storage and extraction of
data in the overlap region between the two polar zones and
the equatorial zone. A transition latitude setting of 0, the
default VGRlD setting, will force the point extraction method
to return a weighted value for points requested in the overlap
area and makes it possible to store both equatorial and polar
grid datasets to the overlap regions. The weighting method is
executed by extracting a data value for the requested point
from both the polar and equatorial grids. The weighted depth
is computed by determining a weight factor for each depth
based on the requested point's proximity to the 64 and 12
latitude zone limits. That is, if a requested point in the
northern hemisphere is closer to the 64 N latitude limit of the

polar grid, the equatorial point is given more weight than the
polar grid value in the weighted depth computation.

Fig. 6 . DBDB-V Version 4.x Grid Model

If the transition latitude is set to 72, equatorial data values
are retrieved for point extractions in the overlap region and
only equatorial data can be written to the overlap region.
Conversely, a transition latitude setting of 64 allows only
polar grid extraction and ingest in the overlap area.
Essentially, a transition latitude of either 64 or 72 disables the
overlap feathering mechanism forcing the API to use polar in
the former and equatorial data grids in the latter for point
requests in the overlap region. In both of these cases, the
transition latitude represents the cut-off latitude between the
polar grids and the equatorial grids.

With some data types (such as sediment classification
codes), interpolation and/or feathering does not make sense
for data retrieval operations. In such cases the transition
latitude should be set lo either 64 or 72 as described above.
Another option to consider is to disable the polar grid storage
entirely by setting the transition latitude to 90. When the
transition latitude is set to 90, only geographic data
extractions and storage are allowed for the entire round-earth
grid system. While point requests can still he made in any of
the supported projections, including the flat-earth projections,
only one geographic grid will be used to store data for the
grid whose transition latitude is set to 90.

IV. VGRID COMPRESSION

As environmental data collection platforms continue to
produce higher resolution data grids, the need for robust
compression in scientific data formats will remain a major
factor in the successifailure of a geo-spatial data format. The
VGRID grid interface provides a compression option that
may be one of three possible values: no compression, zlib
“deflate” compression, or the geofilter compression methods.
As its label suggestion, the no compression option stores
“chunked” HDFS datasets for each grid without any
compression. This method is appropriate for small VGRID
files or in situations where disk space is not a problem.

The zlib compression option is inherited from the HDFS
library through its inclusion of the zlib “deflate” filter.
During the configuration of the HDF5 library, if the presence

of the zlib library version 1.1.2 is discovered a filter is
defined that is referenced as HSZ-FILTER-DEFLATE.
HSZ-FILTER-DEFLATE is a symbolic reference to zlib, “a
general-purpose, legally unencumbered. lossless data-
compression library for use on virtually any computer
hardware and operating system [7].” The zlib compression
method, referred to as “deflate”, operates on blocks of data
where each block is compressed using a combination of the
LZ77 [I I] algorithm and Huffman coding producing typical
compression ratios on the order of 2:l to S:1 (81. Since this
compression method has the potential for generating
compressed data that is larger than the original, the
HSZ-FLAG-OPTIONAL flag should be turned on so such
cases can be handled gracehlly by storing the original data
instead of the compressed data [4]. If zlib compression is
requested for a grid, the VGRID API specifies that the
HSZ-FILTER-DEFLATE filter should to be used for each
HDFS dataset that is created in the dataset. The zlib
compression option also accepts an aggression factor integer
in the range 0 to 9 where 0 is the lowest level of compression
and 9 is the highest level of compression.

An additional compression option has been incorporated
into the VGRID MI as a HDF5 filter. This compression
option uses a modified delta encoding technique, run-length
encoding and bit packing to yield better compression results
than the zlib filter [I].

The geoiilter compression algorithm generally takes
advantage of the naturally occurring redundancy that exists
between adjacent cells for many geophysical properties. That
is, the value of the properly of a geo-located cell,that is
immediately adjacent to another cell is likely to remain the
same or change very little from the adjacent cell. In cases
where there is a series of adjacent cells that do not change
(flat areas of Bathymetry), a run length compression series is
used such that a value indicating the number of continuous
non-varying adjacent cells is stored. Where there are
fluctuations in the value between adjacent cells, a delta length
compression series is used such that only the difference in the
values is stored for each cell in the series.

In the compression process, the bit storage needed for
delta encoding versus the bit requirements of the generation
of a new (delta or run length) series is continuously evaluated
so that an optimum dynamic bit size for the deltas for each
series is achieved. To ensure that only the values of adjacent
cells are evaluated in the compression technique, the rows of
the grid are processed in a “snake-like” fashion so that the
last column of a row is immediately followed by the last
column of the next row and each row is traversed in the
opposite direction of the previous row. Before committing a
compressed cell series to storage, the geofilter algorithm
“looks ahead” to determine if it is more efficient to expand
the number of delta bits needed to store a next cell’s value or
possibly continue to store repeat values in a delta series
versus closing the current series and suffering the storage
overhead of the creation of a new compression series.

With gridded geospatial data, there is often a need to
handle specialized or flag values that may occur frequently in
the grid but may violate the normal rules of redundancy that
occur in the natural environment. There are two bathymetry

904

flag values that are used in the DBDB-V that if not handled
by special provision would significantly degrade ' the
performance of the geofilter compression technique. The two
flags currently in use for DBDB-V choose values that are
outside of normal acceptable ranges of bathymetric data to
indicate values that are over land and/or NULL or missing
data. Thc geofilter algorithm handles these flags by
expanding the range of the delta storage domain to
accommodate the flag values. For each gridded data stream
that is processed, however, a predetermination of the
existence of actual flag data is made so that no additional
delta range is used if the flags do not occur in the data stream.
The algorithm is designed to handle up to 4 sets of pre-
determined flag occurrences in the data stream.

Because the optimum number of bits needed to store the
length of the compression series (hits needed to store the
maximum number of delta values or repeat values in a series)
cannot he easily determined, the geofilter algorithm repeats
the compression technique 7 times while cycling through the
range of from 3 bits to 9 bits (max series of from 8 lo 512
values respectively) for this value and selecting the case that
yields the highest compression ratio. While the geofilter
compression speed compares favorably against gzip and other
compression techniques, this part of the geofilter process is a
good candidate for multiprocessor vectorization since the
multiple compressions could be done in parallel.

Finally, much of the good compression results achieved
by geofilter can be attributed to the reasonable scaling of the
data. In the case of bathymetry, it makes little sense in
storing the mostly interpreted values to the 1000's of a meter
or greater precision when the original collected data (where
soundings may actually exist) is seldom even at meter
accuracy. The floating-point values are scaled for each grid
cell and are then converted to their integer equivalent. In
most cases for DBDB-V, a 0.1-meter precision is still
maintained by multiplying the values by 10 prior to
conversion to integer. Proper scaling of the incoming data
allows for smaller delta values and a higher potential for
repeat values, which improves the efficiency of the
compression. A higher ratio of compression could be
achieved if a more realistic whole-meter precision were used.

It is important to note that once the compression method
is assigned to a grid, the data is accessed externally in the
same as a data grid with no compression. All compression
and de-compression operations are applied at the lowest level
of file U 0 in the VGRID API, the chunk level. As a chunk is
read from the HDFS file, it is decompressed in such a manner
that VGRID will only see the un-compressed data value.
Conversely, when a chunk is written from the HDFS file, it is
compressed and the compressed bit stream is written to the
disk inside the HDF5 low level API.

V. VGRlD API SPECIAL FEATURES

The VGRID API is a comprehensive library written in the
C programming language for creating and manipulating
VGRID objects. The API includes a grid ingest interface and
an access interface as well as basic methods for creating,
opening, and closing objects. Several intemal mechanisms

are maintained in the VGRID API to reduce the time required
to read the contents of a file.

A. VGRID Tile Scheme
Internal to the VGRID API, the square dimensioned tile is

the atomic unit of storage in VGRlD grids. The VGRID tile
scheme is implemented using the HDFS chunk storage option
where the chunk size is defined when the grid creation
function is called for round-earth or flat-earth grids. Use of
the HDFS chunking mechanism allows the VGRlD API to
access the HDFS datasets of a VGRlD grid in the same
manner regardless of the dimensions of its tiles. As a result,
the tile size (chunk size) can be modified to fine-tune the I/O
efficiency of a grid.

B. VGRID Tile Cache
Since VGRlD tiles are the smallest unit of storage in the

VGRlD grid, all extractions from a VGRID constituent
require the reading of tiles from the grids stored in the
constituent. In order to reduce the number of I10 operations
required for area based extractions that use the VGRID point
extraction interface, the VGRlD API maintains an internal
tile caching mechanism. As the API reads tiles from grids in
a constituent group during point extractions, it stores the most
recently read tiles in memory. Each time a tile read operation
is requested in the VGMD API, the tile cache is first checked
for the presence of the target tile. If the tile is in cache its
contents can be accessed directly as opposed to having to
read the tile from the HDFS dataset. The tile cache has a
maximum size that can be modified through the VGRlD API
initialized function. If a tile is to he inserted into the tile
cache and there is not enough cache memory left to insert the
tile, tiles are released from the back of the tile cache, the tiles
that have been least frequently accessed, until enough free
space is available for the new tile.

The fact that the VGRID API will read data by tiles from
grids means the tile cache mechanism can be best utilized by
reading data through the point extraction interface in chunks
that are aligned with the tile dimensions of a particular grid.
However, when several resolutions exist in a file, it is not
always feasible that the resolution from which the extraction
will he made is known before the extraction is made. In this
case the maximum tile cache size can be modified to ensure
that a full row of the finest resolution tiles for a particular
area (or for the entire database) can he placed into the tile
cache during a row first, scanline read from the VGRlD
constituent.

C. VGRID Coverage Bilmap
The VGFUD API also maintains an internal coverage

bitmap to record where tiles exist in the file and where they
do not. Each grid in the VGRlD file maintains its own
coverage bitmap. The bitmap is implemented as a grid where
each tile is represented as a single bit. I f the bit is set to 0 the
tile either exists or has not been checked. If a bit is set to I ,
the API has accessed the tile and discovered that it does not
exist. The bitmap mechanism allows the API to remember
where it does not have data so that future tile read requests
will quickly determine that the tile does not exist. This is
necessary because every tile request using the HDF5

905

chunking will return data even if the chunk has never been
written to. Similar to the theory behind HDFS chunking, the
bitmap is a dynamic structure that has a maximum size and
allocates bitmap regions when a set bit request is made to that
region. If the bitmap becomes larger than the maximum
bitmap cache size, hitmap regions at the end of the bitmap
region list arc removed until sufficient space is available for
the new bitmap region.

'VI. VGRID in PUMA-TEDS

As an example, the VGRlD file format and API is used as
the common file format for the PUMA-TEDS system (see
Figure 7). When the PUMA system produces a bathymetric
data grid it writes the data to a VGRlD file and transmits it to
the local TEDS server. The TEDS server then archives the
PUMA data file and passes the data grid to the DBDB-V
ingest API. The DBDB-V ingest API is a product specific
API built on the VGRID API. The DBDB-V ingest function
accepts the VGRlD file and uses it to update the DBDB-V
supplemental partition. The DBDB-V supplemental partition
is a dynamic VGRlD file that is used to complement the
historical OAML-certified DBDB-V that is stored in TEDS.
As data is ingested into the supplemental VGRlD file, the
DBDB-V algorithm performs any required merging of data
that the new data grid may overlap.

After ingesting the PUMA data updates, the TEDS can
then access the DBDB-V supplemental and historical VGRID
tiles as one file through the customized DBDB-V access API.
The DBDB-V access routines extend the bounce algorithm of
the VGRlD point extraction to include the addition of the
supplemental VGRID file. This bounce algorithm first
searches the supplemental file for the requested data and then
searches the VGRlD file if non-NULL data is not found in
the supplemental file. TEDS provides the mechanism to
transfer individual PUMA update files or the entire
supplemental partition off-board the host vessel [IO].

. . .
.Puli4 . :

DATA

Fig. I . PUMA-TEDS Data Flow

VI]. CONCLUSION

Although VGRID has been designed to support the
storage and retrieval of bathymetric data collected from the

PUMA system, its generic model makes it suitable for use in
any type of environmental data grid through a customized
product specification. The current VGRID version inherits
the powerful features of the HDFS Ale format providing three
basic geo-spatial objects: files: constituents, and grids. Tile-
based mechanisms that operate behind the scenes in the
VGRID API optimize access and storage operations for grid
data. As the common file format in PUMA-TEDS, VGRID
equips the system with advanced grid storage features that are
attractive to most environmental data providers, such as
NAVOCEANO.

In the future, NRL-SSC will investigate the inclusion of a
triangulated irregular network (TIN) storage structure into
VGRlD to either replace or complement the current
rectangular grid storage system.' Such adaptive mesh
structures are likely to become the next generation of grid
storage that overcomes most of the deficiencies of
rectangular, regularly spaced grids. In addition, NRI-SSC
will explore the migration of VGRID to a pure geo-spatial
database access layer that operates independent of the
physical file storage format. The layered API hierarchy in
VGRlD lends itself to a modular file storage API that will
allow the replacement of the HDFS file format base with a
more sophisticated Data Base Management System (DBMS).
Incorporation of an advanced DBMS base will become
increasingly important as more and more dynamic databases
are introduced into two-way portal architectures such as
TEDS.

The recent strides in low-cost, high-speed computer
processing combined with major advances in
communications bandwidth available to Navy ships, aircraft,
and submarines, have made through-the-sensor
oceanographic and atmospheric data collection feasible. This
concept, which exploits the tactical dwell of sonar and radar
systems, will result in the ability to collect, decimate, and
store volumetric data for use in Fleet Tactical Decision Aids
(TDAs). These data types include bathymetry (as noted in
the PUMA effort), bottom sediment type (via fathometers),
geoacoustic parameters such as scattering (via sonars), .
atmospheric refractivity (via radars), and many others. The
VCRlD effort will undoubtedly play a critical role in the
development and fielding of these critical new technologies.

ACKNOWLEDGMENTS

'

This research was sponsored under Program Element No.
06037041'3 by the Oceanographer of the Navy (CNO N096)
via SPAWAR PMW 155. This report and the VGRlD file
format are intended to support the PUMA-TEDS Through
The Sensors program for near real-time assimilation of
historical DBDB-V with PUMA bathymetry. The Naval
Research Laboratory would like to thank the following
individuals for their contribution to the production of this
report and VGRID: CDR John Kusters (SPAWAR, PMW-
ISS), Dave Kubik (ASTO), Jim Broughton (ASTO), Paul
Stephens (NAVOCEANO), William Rankin
(NAVOCEANO), Jeny Landmm (NRL-SSC, retired), Rick
Bailey (ARL UT), Steve Lacker (ARL UT), David Wight
(ARL UT), Keith Kelley (Anteon), Dave Parillo (Anteon),
and Michelle McGregor (Lockheed Martin).

906

[41

1101

REFERENCES

Braud, James E., John L. Breckenridge, James E.
Current, Jerry L. Landrum. “Data Base Structure to
Support the Production of the Digital Bathymetric
Data Base,” NRL Report (NORDA Report No.
236), Naval Ocean Research and Development
Activity, Stennis Space Center, MS 39529, 1989.
Defense Mapping Agency, “DMA Technical
Manual 8358.1: Datums, Ellipsoids, Grids and Grid
Reference Systems,” Fairfax, VA, 20 Sept. 1990.
Defense Mapping Agency, “DMA Technical
Manual 8358.2: The Universal Grids: Universal
Transverse Mercator (UTM) and Universal Polar
Stereographic (UPS),” Fairfax, VA, Sept. 1989.
HDFS User’s Guide. Retrieved May 16, 2002, from
National Center for Supercomputing Applications,
Hierarchical Data Format Web site:
http://hdf.ncsa.uiuc.eduR1DF5/docM5.user.html
Introduction to HDFS Release 1.4. Retrieved May
16, 2002, from National Center for Supercomputing
Applications, Hierarchical Data Format Web site:
httn://lidf.ncsa.uiuc.edu/HDF5/doc/H5.iiit1~o.ht1nl
The Naval Oceanographic Office, “Data Base
Description for Digital Bathymetric Data Base -
Variable Resolution (DBDB-V) Version 3.0,” July
2000.
Roelofs Greg and lean-loup Gailly. “zlib Home
Page.” Retrieved May 16, 2002, from the zlib Home
Page Web site: httD:/lww\v.ezip.or~%lib/
Roelofs Greg and Jean-Ioup Gailly. “zlib Technical
Details.” Retrieved May 16, 2002, from the zlib
Home Page Web site:
httu:/iwww.~zip.ordzlib!zlib tech.htnil
Steed, Chad, lames E. Braud. “A Flat Earth Model
for DBDB-V,” NRLiFK/7440--02-10,025, Naval
Research Laboratory, Stennis Space Center, MS
39529, Submitted for publication 2002.
Steed, Chad, Jerry Landrum, and Chris Moreau.
“PUMA-TEDS Technical Execution Plan,”
NRL/FW7440--02-10,003, Naval Research
Laboratory, Stennis Space Center, MS 39529, June
2002.
Ziv J., Lempel A., “A Universal Algorithm for
Sequential Data Compression”, IEEE Transactions
on Information Theory, Vol. 23, No. 3, pp. 337-343.

907

http://hdf.ncsa.uiuc.eduR1DF5/docM5.user.html

