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Absrracr-This paper describes the Variable resolution GRID 
(VCRID) storage model designed tu support the storage and 
retrieval of bathymetric data collected through the Precision 
Underwater MApping (PUMA) System using the Tactical 
Environmental Data Sewer (TEDS) and the Naval 
Oceanographic Office’s (NAVOCEANO) Digital Bathymetric 
Data Base - Variable (DBDB-V) Resolution product. Sponsored 
by the Space and Naval Warfare Systems Command (SPAWAR, 
PMW-155), PUMA-TEDS represents a significant advancement 
in the collection and assimilation of environmental data at 
global, regional or local levels. Although VGRlD has been 
developed for PUMA bathymetry, its generic implementation 
makes it suitable for use with any type of environmental data 
grid through the definition of a product specification. 

Built on NCSA’s Hierarcbical Data Format version 5 
(HDFS), the VGRlD model inherits the HDF5 file format and 
library implementation that is optimized for large-scale 
scientific data storage. The VGRID model provides a hierarchy 
of environmental storage objects: files, constituents, and grids. 
A VGRlD file can contain VGRlD constituents enabling multi- 
parameter data storage. VGRID Constituents can contain 
VGRlD grids that are identified by resolutions and have grid 
increments specified in arc minutes, meters, or polar 
stereographic grid units. The grid interface supports the 
storage of geographic, polar stereographic, Universal 
Transverse Mercator (UTM), and Universal Polar 
Stereographic (UPS) projected grids. Behind the scenes of the 
VGRlD API, a tile scheme is applied tu data written to the 
VGRID file. When VGRlD grids are created, compression 
options can be set for aU tiles created in the resolution. The 
VGRlD tile scheme provides the framework for a robust tile 
caching mechanism, which minimizes the time required tu read 
data from a VGRID fie. 

The VGRlD API uses a “bounce” algorithm tu  search each 
resolution and extract the highest resolution data for a point 
query. In addition, three interpolation options are available for 
point queries: nearest neighbor, bilinear, and minimum 
curvature spline. The minimum curvsture spline algurithm 
provides a “feathering” capability that effectively reduces the 
artifacts that often occur at the resolution boundaries of 
multiple resolution datasets. 
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Tu support the dynamic nature of the PUMA-TEDS system, 
the concept of eo-existing supplemental and historical VGRID 
files has been developed tu support near real-time enhancements 
tu the principle database product. Tu preserve the generic 
storage model, the supplementary file concept is nut included in 
the VGRID specification but is left fur implementation at the 
product specification level. Investigation of the PUMA-TEDS 
DBDB-V model provides valuable insight into the dynamic 
possibilities of the VGRID file model. 

1. INTRODUCTION 

The Variable resolution GRID (VGRID) file format 
provides a generic, geo-spatial interface to the National 
Center for Supercomputing Applications’ (NCSA) 
Hierarchical Data Format version 5 (HDF5). The 
development of VGRlD is motivated by the need for a 
common grid tile format to store and retrieve bathymetric 
data collected by the Precision Undetwater MApping 
(PUMA) forward-looking sonar system using the Tactical 
Environmental Data Server (TEDS) and the Naval 
Oceanographic Office’s (NAVOCEANO) Digital 
Bathymetric Data Base - Variable (DBDB-V) resolution 
product. 

Sponsored by the Space and Naval Warfare Systems 
Command (SPAWAR, PMW-IS) ,  PUMA-TEDS represents 
a significant advancement in the ability of tactical platforms 
to collect and assimilate environmental data at global, 
regional or local levels of operation. In essence, PUMA- 
TEDS .and other Through-The-Sensors (TTS) developments 
transform tactical platforms into capable survey vessels with 
near-immediate capabilities for analyzing collected data. 

By hamessing the powerful grid storage features of 
HDFS, VGRID provides a hierarchy of storage objects for 
intuitive, geo-spatial data storage. As the top level of the 
object hierarchy, a VGRID file is created with the VGRlD 
Application Programmer’s Interface (API). Providing the 
next level of the hierarchy, VGRlD constituents represent an 
intermediate level of abstraction between VGRlD files and 
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the data grids. Finally, VGRlD grids are created under 
constituents and provide the data storage structure for the 
VGRlD data model. 

In order to improve access to file contents, VGRID 
provides several intemal mechanisms that rely on the HDFS 
“chunking” interface. Using the “chunking” mechanism, 
VGRlD implements a sophisticated tiling scheme where the 
atomic unit of storage and retrieval is the tile structure. Other 
optimizations in the VGRID API, such as tile caching and tile 
coverage bitmaps, significantly enhance the efficiency of the 
data extraction function provided by the VGRlD constituent 
interface. In addition, the VGRlD grid interface offers 
compression options to provide efficient data storage and 
reduced file 110. 

In such dynamic projects such as PUMA-TEDS, the 
development of an efficient, comprehensive grid file format 
is crucial to the success of the system. Analysis of the role 
VGRlD plays in the PUMA-TEDS system reinforces the 
suitability of the VGRID file format and APl as a powerful, 
generic solution for environmental grid products, especially 
those that will be used in Through-The-Sensors architectures. 

Developed and maintained by the National Center for 
Supercomputing Applications (NCSA) at the University of 
Illinois at Urbana-Champaign, HDFS is a data format 
specification with supporting library implementation that 
addresses both the limitations of the older HDF product, 
HDF4.x, and the current and anticipated requirements of 
modem systems and applications. In addition to the HDF 4.x 
improvements, HDFS developers have built on the lessons 
learned by similar scientific data formats such as netCDF, 
PDB, AIO, and MPI-IO. 

One of the most significant improvements introduced with 
HDFS is the capability to store files larger than 2 gigabytes 
and an unlimited number of objects per file (HDF4.x is 
limited to 20,000 objects). HDFS also provides a simpler, 
more comprehensive data model that is based on two basic 
data structures: a multi-dimensional array of record 
structures (dataset), and a grouping structure. The new HDFS 
API is better engineered than its predecessor with improved 
support for parallel input I output, threads, and other 
requirements imposed by modem systems. 

In the hierarchical data model imposed by HDFS, groups 
and datasets are the primary building blocks. A HDFS group 
is an organizational structure that contains instances of zero 
or more groups or datasets while a HDFS dataset is a multi- 
dimensional array of data elements. Both groups and datasets 
can be stored with supporting metadata. Similar to the UNIX 
interface for working with files and directories, HDFS objects 
are referenced by their full (or absolute) path names through 
the HDFS API and utilities. 

To support custom metadata needs, HDFS groups and 
datasets may have an associated attribute list. Used to 
describe the nature andor the intended usage of a HDFS 
object, attributes are small named datasets that are attached to 
primaly datasets, groups or named datatypes. An attribute is 
composed of a value element that contains one or more data 
entries of the same datatype and a name element that provides 
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a secondary means of referencing the attribute. When 
accessing attributes, they can be identified by name or by an 
index value [ 5 ] .  

Fig. I .  HDFS “Chunking” Feature 

B. HDF5 Chunking 
The HDFS format offers several storage layout options for 

customizing the logical storage of a HDFS dataset. The 
default storage layout, the contiguous option, forces data to 
be stored in the same linear fashion that it is organized in 
memory. For small amounts of data, the compact storage 
option is useful since data can be stored directly in the object 
header (compact storage is not yet supported in the HDFS 
library). 

Perhaps the most powe&l storage option is HDFS’s 
chunked layout option that partitions the dataset into equal- 
sized “chunks” that are stored separately in the file (see 
Figure 1). The chunking mechanism makes it possible to 
achieve good performance when accessing subsets of the 
dataset, even when the subset to be chosen is orthogonal to 
the normal storage order of the dataset. The blocked layout 
of a chunked dataset also makes it possible to compress large 
datasets and still achieve good performance when accessing 
subsets. With chunking enabled, the dimensions of a dataset 
can be efficiently extended in any direction and filters can be 
defined to operate on the chunks of datasets as they are read 
and before they are written to files. HDFS provides a robust 
intemal manager for the chunking mechanism where 
individual chunks are not allocated for a dataset until data is 
wrilten to the chunk. Read operations in areas of the dataset 
where the chunk has not been allocated return a user-defined 
fill value [4]. 

B. HDF5 File Families 
Because HDFS files can become quite large, HDFS 

provides a file family mechanism to split a HDFS file address 
space across several smaller files, called file family members. 
This feature is particularly useful on systems that do not 
support files larger than 2 gigabytes. In HDFS file families, 
each member of the family is the same logical size, though 
the size and disk storage reported by the file system listing 
tools may be substantially smaller. The name passed to the 
HDFS file create or open function should include a printf(3c)- 
style integer format specifier that will be replaced with a 
family member number [4]. The first family member is 
numbered zero (0) and is created automatically when the file 
is created. New family members are added as needed by the 
file API. 

C. HDFS Filters 
HDFS allows chunked data to pass through user-defined 

filters on the way to or from the disk. As depicted in Figure 
2, HDFS filters operate on the blocks of a chunked dataset 
and can be arranged in a pipeline so output of one filter 



becomes the input of the next filter. Each filter has a two- 
byte identification number allocated by NCSA and can also 
be passed application-defined integer resources to control its 
behavior. 

P ilter P peline 

c h u n k  
, 
3 

Fig. 2. HDFS Filler Pipeline 

Two types of filters can be applied to raw data IiO: 
permanent filters and transient filters. The permanent filter 
pipeline is defined when the dataset is created while the 
transient pipeline is defined for each IiO operation. During 
writes to the HDFS dataset, the transient filters are applied 
first in  the order defined and then the permanent filters are 
applied in the order defined. For a read operation, the 
opposite order is used: permanent filters in reverse order, 
then transient filters in reverse order. Each tilter is bi- 
directional, handling both input and output to the file, and a 
flag is passed to the filter to indicate the direction. In either 
case, the filter reads a chunk of data from a buffer, usually 
performs some sort of transformation on the data, places the 
result in the same or new buffer, and returns the buffer 
pointer and size to the calling function [4]. 

111. VGRID OBJECTS 

The VGRID file format is designed to provide a high- 
level, geo-spatial interface for HDFS formatted files. 
Retaining HDFS’s hierarchical structure, VGRID uses the 
HDFS group and dataset objects as the primary building 
blocks for its three main components: files, constituents, and 
grids. 

File 
i.e. DBDB-V, GDB-V 

Constituents 
Le. Bithy, AICYRP) 

Paramden 

Grids 
i.e. 5 minute, Zminute 

50 meter, I meter 

Coordinate System Dst i~e t  
i.e. geodetic, UTM, UPS 

Fig 3 VGRlD Oblect Hierarchy 

A .  VGRID Files 
As the root of the VGRID object hierarchy (see Figure 3); 

VGRlD files are created through the VGRlD API as either 
single HDFS files or as HDFS file families. In addition to the 
basic methods for creating, opening and closing a VGRlD 
file, the VGRID API provides support methods for querying 
file information such as the properties for each constituent 
stored in a file. 

If a VGRlD file is successfully created or opened, the 
VGRID API returns a positive integer value that is used to 
reference the file in other API methods. Since the VGRlD 
file identifier is actually a copy of the HDFS identifier, it can 
also be used with HDFS API functions to store product 
specific data outside the VGRID storage stmcture. For 
example, a custom header providing metadata for the file can 
be directly written to the VGRID file by using the HDFS 
attribute interface with the VGRIDMDFS file identifier. 
Although VGRID provides no direct means of accessing such 
custom data elements, product specific methods can be 
written to directly access the additional file data through the 
HDFS interface. 

E. VGRlD Constituents 
As members of VGRID file objects, VGRID constituents 

are designed to represent the individual elements of a data 
product as separate entities in a common file. The constituent 
interface provides an additional level of data abstraction to 
the VGRlD grid organization that is inherited from VGRID’s 
predecessor file format, DBDB-V version 4.0. In the new 
DBDB-V VGRID implementation, one constituent is created 
to store the seafloor depth measurements and two other 
constituents are created to store the error estimates for each 
depth [see Figure 4). Although the previous version of the 
DBDB-V file format provided the capability to store more 
than one data element for each grid cell, it lacked the 
expandability of the constituent interface. With the VGRlD 
file format, the need to add a new data element to the tile is 
easily accommodated by creating and populating a new file 
constituent. However, an equivalent expansion of the 
previous DBDB-V file format requires extensive changes to 
both the DBDB-V API and the file structure. 

The constituent interface is also useful for separating 
different versions of the same data type into separate portions 
of a common file. Recalling the DBDB-V example above, 
the NAVOCEANO-certified ocean floor depths can be stored 
in one constituent while another constituent can be used to 
store real-time depth measurements from a survey vessel. By 
merging the data from each constituent, the void areas in the 
real-time dataset can be filled with the historical data to 
obtain a complete chart of an area of interest while onboard 
the survey vessel. 

When a VGRlD constituent is created using the VGRlD 
API, a HDFS group is created in the VGRID file and general 
metadata for the constituent is stored as HDFS attributes. 
The VGRlD constituent creation method accepts a 
constituent name and the NULL value flag that will be used 
for all data stored in the constituent. Similar to the VGRlD 
file interface, the VGRlD API returns the HDFS group 
identifier for each constituent that is opened or created 
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successfully. Consequently, the constituent identifier can he 
used to fulfill custom data storage needs that are not 
specifically addressed by the VGRlD API by directly 
accessing the file through the HDFS API. 

S 

Fig. 4. NAVOCEANO's DBDB-V in V G N D  

To provide access to the data stored in a constituent, the 
VGRlD API provides a point extraction function that returns 
the best (meaning highest resolution) data value for a specific 
point of a constituent in the database. The finest grid 
resolution and coarsest grid resolution extraction properties 
can be adjusted to control the range of grids that will be 
searched for the requested point. Beginning with the finest 
grid resolution setting, the point extraction algorithm searches 
each grid for the requested point until it finds a non-NULL 
value or the coarsest grid has been searched. If a non-NULL 
point is found it is returned and the algorithm immediately 
ends the search but if no non-NULL data is found the 
algorithm returns the error code that indicates no data exists 
for the request point. 

The VGRID point extraction method offers nearest 
neighbor, bilinear, and minimum curvature spline 
interpolation options. If the nearest neighbor interpolation 
option is chosen, the grid value closest to the requested point 
is returned along with the coordinates where the grid value is 
stored in the database. For the other interpolators, the 
coordinates for the point returned will be the coordinates of 
the requested point. The transition latitude extraction 
parameter can also he modified to control point extractions in 
the overlap zone in the round-earth grid system. A detailed 
explanation of the transition latitude parameter is given in the 
following section on the VGRlD Grid interface. 

C. VGRID Grids 
As the low-level public data storage object (see Fig. 3), 

VGRlD grids are created and stored under the constituent 
level of the object hierarchy. Distinguished by its resolution, 
each grid must be unique to the constituent in which it is 
stored. For example, if a 5-minute resolution grid is created 
for a VGRID file in a particular constituent, only one 5- 
minute grid is allowed in the constituent. 

The grid resolution is quantified with one of three 
available units of measurement when it is created through the 
VGRlD API: meters, minutes of arc, or polar stereographic 
grid units. The units of the grid increment are used to 
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determine whether the flat-earth or round-earth grid system 
will be used to store data in the grid. Using minutes of arc or 
polar stereographic grid units enables a round-earth grid 
system, but using meter-based units for the grid resolution 
activates the flat-earth grid system. 

Fig. 5 .  UTM and UPS Zones for NIMA's MGRS 

Based on the projection systems of the National Imaging 
and Mapping Agency's (NIMA) Military Grid Reference 
System (MGRS), the flat-earth grid system provides global 
data storage in a meters-based frame of reference [2]. In 
order to provide global coverage with minimal distortion, the 
flat-earth option uses two Universal Polar Stereographic 
(UPS) grids, one for each polar region, and a Universal 
Transverse Mercator (UTM) grid system from 84 N to 80 S 
(see Figure 5) .  The flat earth grid system storcs one tiled grid 
for each of the 60 UTM zones and for each UPS polar region 
for a total of 62 data grids per flat-earth grid object [3]. 
Although VGRID does not impose restrictions on the use of 
the flat-earth grid system, it is best suited to large-scale 
datasets with regional coverage [91. 

Based on the coordinate systems of the DBDB-V 4.x 
HDFS file format, the round-earth grid system provides two 
polar stereographic grids, one for each polar region, and an 
equatorial grid that is based on geographic 
(latitude/longitude) coordinates. VGRID stores one tiled grid 
for the equatorial grid and each of the polar grids for a total 
of 3 grids per round-earth grid object. By default, the 
equatorial region of the round earth system extends from 72 
N to 72 S and the polar regions extend from 64 N to 90 N and 
from 64 S to 90 S at the north and south poles, respectively 
(see Figure 6) [6]. 

Accessible through the constituent interface, the transition 
latitude property controls both the storage and extraction of 
data in the overlap region between the two polar zones and 
the equatorial zone. A transition latitude setting of 0, the 
default VGRlD setting, will force the point extraction method 
to return a weighted value for points requested in the overlap 
area and makes it possible to store both equatorial and polar 
grid datasets to the overlap regions. The weighting method is 
executed by extracting a data value for the requested point 
from both the polar and equatorial grids. The weighted depth 
is computed by determining a weight factor for each depth 
based on the requested point's proximity to the 64 and 12 
latitude zone limits. That is, if a requested point in the 
northern hemisphere is closer to the 64 N latitude limit of the 



polar grid, the equatorial point is given more weight than the 
polar grid value in the weighted depth computation. 

Fig. 6 .  DBDB-V Version 4.x Grid Model 

If the transition latitude is set to 72, equatorial data values 
are retrieved for point extractions in the overlap region and 
only equatorial data can be written to the overlap region. 
Conversely, a transition latitude setting of 64 allows only 
polar grid extraction and ingest in the overlap area. 
Essentially, a transition latitude of either 64 or 72 disables the 
overlap feathering mechanism forcing the API to use polar in 
the former and equatorial data grids in the latter for point 
requests in the overlap region. In both of these cases, the 
transition latitude represents the cut-off latitude between the 
polar grids and the equatorial grids. 

With some data types (such as sediment classification 
codes), interpolation and/or feathering does not make sense 
for data retrieval operations. In such cases the transition 
latitude should be set lo either 64 or 72 as described above. 
Another option to consider is to disable the polar grid storage 
entirely by setting the transition latitude to 90. When the 
transition latitude is set to 90, only geographic data 
extractions and storage are allowed for the entire round-earth 
grid system. While point requests can still he made in any of 
the supported projections, including the flat-earth projections, 
only one geographic grid will be used to store data for the 
grid whose transition latitude is set to 90. 

IV. VGRID COMPRESSION 

As environmental data collection platforms continue to 
produce higher resolution data grids, the need for robust 
compression in scientific data formats will remain a major 
factor in the successifailure of a geo-spatial data format. The 
VGRID grid interface provides a compression option that 
may be one of three possible values: no compression, zlib 
“deflate” compression, or the geofilter compression methods. 
As its label suggestion, the no compression option stores 
“chunked” HDFS datasets for each grid without any 
compression. This method is appropriate for small VGRID 
files or in situations where disk space is not a problem. 

The zlib compression option is inherited from the HDFS 
library through its inclusion of the zlib “deflate” filter. 
During the configuration of the HDF5 library, if the presence 

of the zlib library version 1.1.2 is discovered a filter is 
defined that is referenced as HSZ-FILTER-DEFLATE. 
HSZ-FILTER-DEFLATE is a symbolic reference to zlib, “a 
general-purpose, legally unencumbered. lossless data- 
compression library for use on virtually any computer 
hardware and operating system [7].” The zlib compression 
method, referred to as “deflate”, operates on blocks of data 
where each block is compressed using a combination of the 
LZ77 [I  I ]  algorithm and Huffman coding producing typical 
compression ratios on the order of 2:l to S:1 (81. Since this 
compression method has the potential for generating 
compressed data that is larger than the original, the 
HSZ-FLAG-OPTIONAL flag should be turned on so such 
cases can be handled gracehlly by storing the original data 
instead of the compressed data [4]. If zlib compression is 
requested for a grid, the VGRID API specifies that the 
HSZ-FILTER-DEFLATE filter should to be used for each 
HDFS dataset that is created in the dataset. The zlib 
compression option also accepts an aggression factor integer 
in the range 0 to 9 where 0 is the lowest level of compression 
and 9 is the highest level of compression. 

An additional compression option has been incorporated 
into the VGRID MI as a HDF5 filter. This compression 
option uses a modified delta encoding technique, run-length 
encoding and bit packing to yield better compression results 
than the zlib filter [I]. 

The geoiilter compression algorithm generally takes 
advantage of the naturally occurring redundancy that exists 
between adjacent cells for many geophysical properties. That 
is, the value of the properly of a geo-located cell,that is 
immediately adjacent to another cell is likely to remain the 
same or change very little from the adjacent cell. In cases 
where there is a series of adjacent cells that do not change 
(flat areas of Bathymetry), a run length compression series is 
used such that a value indicating the number of continuous 
non-varying adjacent cells is stored. Where there are 
fluctuations in the value between adjacent cells, a delta length 
compression series is used such that only the difference in the 
values is stored for each cell in the series. 

In the compression process, the bit storage needed for 
delta encoding versus the bit requirements of the generation 
of a new (delta or run length) series is continuously evaluated 
so that an optimum dynamic bit size for the deltas for each 
series is achieved. To ensure that only the values of adjacent 
cells are evaluated in the compression technique, the rows of 
the grid are processed in a “snake-like” fashion so that the 
last column of a row is immediately followed by the last 
column of the next row and each row is traversed in the 
opposite direction of the previous row. Before committing a 
compressed cell series to storage, the geofilter algorithm 
“looks ahead” to determine if it is more efficient to expand 
the number of delta bits needed to store a next cell’s value or 
possibly continue to store repeat values in a delta series 
versus closing the current series and suffering the storage 
overhead of the creation of a new compression series. 

With gridded geospatial data, there is often a need to 
handle specialized or flag values that may occur frequently in 
the grid but may violate the normal rules of redundancy that 
occur in the natural environment. There are two bathymetry 
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flag values that are used in the DBDB-V that if not handled 
by special provision would significantly degrade ' the 
performance of the geofilter compression technique. The two 
flags currently in use for DBDB-V choose values that are 
outside of normal acceptable ranges of bathymetric data to 
indicate values that are over land and/or NULL or missing 
data. Thc geofilter algorithm handles these flags by 
expanding the range of the delta storage domain to 
accommodate the flag values. For each gridded data stream 
that is processed, however, a predetermination of the 
existence of actual flag data is made so that no additional 
delta range is used if the flags do not occur in the data stream. 
The algorithm is designed to handle up to 4 sets of pre- 
determined flag occurrences in the data stream. 

Because the optimum number of bits needed to store the 
length of the compression series (hits needed to store the 
maximum number of delta values or repeat values in a series) 
cannot he easily determined, the geofilter algorithm repeats 
the compression technique 7 times while cycling through the 
range of from 3 bits to 9 bits (max series of from 8 lo 512 
values respectively) for this value and selecting the case that 
yields the highest compression ratio. While the geofilter 
compression speed compares favorably against gzip and other 
compression techniques, this part of the geofilter process is a 
good candidate for multiprocessor vectorization since the 
multiple compressions could be done in parallel. 

Finally, much of the good compression results achieved 
by geofilter can be attributed to the reasonable scaling of the 
data. In the case of bathymetry, it makes little sense in 
storing the mostly interpreted values to the 1000's of a meter 
or greater precision when the original collected data (where 
soundings may actually exist) is seldom even at meter 
accuracy. The floating-point values are scaled for each grid 
cell and are then converted to their integer equivalent. In 
most cases for DBDB-V, a 0.1-meter precision is still 
maintained by multiplying the values by 10 prior to 
conversion to integer. Proper scaling of the incoming data 
allows for smaller delta values and a higher potential for 
repeat values, which improves the efficiency of the 
compression. A higher ratio of compression could be 
achieved if a more realistic whole-meter precision were used. 

It is important to note that once the compression method 
is assigned to a grid, the data is accessed externally in the 
same as a data grid with no compression. All compression 
and de-compression operations are applied at the lowest level 
of file U 0  in the VGRID API, the chunk level. As a chunk is 
read from the HDFS file, it is decompressed in such a manner 
that VGRID will only see the un-compressed data value. 
Conversely, when a chunk is written from the HDFS file, it is 
compressed and the compressed bit stream is written to the 
disk inside the HDF5 low level API. 

V. VGRlD API SPECIAL FEATURES 

The VGRID API is a comprehensive library written in the 
C programming language for creating and manipulating 
VGRID objects. The API includes a grid ingest interface and 
an access interface as well as basic methods for creating, 
opening, and closing objects. Several intemal mechanisms 

are maintained in the VGRID API to reduce the time required 
to read the contents of a file. 

A. VGRID Tile Scheme 
Internal to the VGRID API, the square dimensioned tile is 

the atomic unit of storage in VGRlD grids. The VGRID tile 
scheme is implemented using the HDFS chunk storage option 
where the chunk size is defined when the grid creation 
function is called for round-earth or flat-earth grids. Use of 
the HDFS chunking mechanism allows the VGRlD API to 
access the HDFS datasets of a VGRlD grid in the same 
manner regardless of the dimensions of its tiles. As a result, 
the tile size (chunk size) can be modified to fine-tune the I/O 
efficiency of a grid. 

B. VGRID Tile Cache 
Since VGRlD tiles are the smallest unit of storage in the 

VGRlD grid, all extractions from a VGRID constituent 
require the reading of tiles from the grids stored in the 
constituent. In order to reduce the number of I10 operations 
required for area based extractions that use the VGRID point 
extraction interface, the VGRlD API maintains an internal 
tile caching mechanism. As the API reads tiles from grids in 
a constituent group during point extractions, it stores the most 
recently read tiles in memory. Each time a tile read operation 
is requested in the VGMD API, the tile cache is first checked 
for the presence of the target tile. If the tile is in cache its 
contents can be accessed directly as opposed to having to 
read the tile from the HDFS dataset. The tile cache has a 
maximum size that can be modified through the VGRlD API 
initialized function. If a tile is to he inserted into the tile 
cache and there is not enough cache memory left to insert the 
tile, tiles are released from the back of the tile cache, the tiles 
that have been least frequently accessed, until enough free 
space is available for the new tile. 

The fact that the VGRID API will read data by tiles from 
grids means the tile cache mechanism can be best utilized by 
reading data through the point extraction interface in chunks 
that are aligned with the tile dimensions of a particular grid. 
However, when several resolutions exist in a file, it is not 
always feasible that the resolution from which the extraction 
will he made is known before the extraction is made. In this 
case the maximum tile cache size can be modified to ensure 
that a full row of the finest resolution tiles for a particular 
area (or for the entire database) can he placed into the tile 
cache during a row first, scanline read from the VGRlD 
constituent. 

C. VGRID Coverage Bilmap 
The VGFUD API also maintains an internal coverage 

bitmap to record where tiles exist in the file and where they 
do not. Each grid in the VGRlD file maintains its own 
coverage bitmap. The bitmap is implemented as a grid where 
each tile is represented as a single bit. I f  the bit is set to 0 the 
tile either exists or has not been checked. If a bit is set to I ,  
the API has accessed the tile and discovered that it does not 
exist. The bitmap mechanism allows the API to remember 
where it does not have data so that future tile read requests 
will quickly determine that the tile does not exist. This is 
necessary because every tile request using the HDF5 

905 



chunking will return data even if the chunk has never been 
written to. Similar to the theory behind HDFS chunking, the 
bitmap is a dynamic structure that has a maximum size and 
allocates bitmap regions when a set bit request is made to that 
region. If the bitmap becomes larger than the maximum 
bitmap cache size, hitmap regions at the end of the bitmap 
region list arc removed until sufficient space is available for 
the new bitmap region. 

'VI. VGRID in  PUMA-TEDS 

As an example, the VGRlD file format and API is used as 
the common file format for the PUMA-TEDS system (see 
Figure 7). When the PUMA system produces a bathymetric 
data grid it writes the data to a VGRlD file and transmits it to 
the local TEDS server. The TEDS server then archives the 
PUMA data file and passes the data grid to the DBDB-V 
ingest API. The DBDB-V ingest API is a product specific 
API built on the VGRID API. The DBDB-V ingest function 
accepts the VGRlD file and uses it to update the DBDB-V 
supplemental partition. The DBDB-V supplemental partition 
is a dynamic VGRlD file that is used to complement the 
historical OAML-certified DBDB-V that is stored in TEDS. 
As data is ingested into the supplemental VGRlD file, the 
DBDB-V algorithm performs any required merging of data 
that the new data grid may overlap. 

After ingesting the PUMA data updates, the TEDS can 
then access the DBDB-V supplemental and historical VGRID 
tiles as one file through the customized DBDB-V access API. 
The DBDB-V access routines extend the bounce algorithm of 
the VGRlD point extraction to include the addition of the 
supplemental VGRID file. This bounce algorithm first 
searches the supplemental file for the requested data and then 
searches the VGRlD file if non-NULL data is not found in 
the supplemental file. TEDS provides the mechanism to 
transfer individual PUMA update files or the entire 
supplemental partition off-board the host vessel [IO]. 

. .  . 
.Puli4 . : 

DATA 

Fig. I .  PUMA-TEDS Data Flow 

VI]. CONCLUSION 

Although VGRID has been designed to support the 
storage and retrieval of bathymetric data collected from the 

PUMA system, its generic model makes it suitable for use in 
any type of environmental data grid through a customized 
product specification. The current VGRID version inherits 
the powerful features of the HDFS Ale format providing three 
basic geo-spatial objects: files: constituents, and grids. Tile- 
based mechanisms that operate behind the scenes in the 
VGRID API optimize access and storage operations for grid 
data. As the common file format in PUMA-TEDS, VGRID 
equips the system with advanced grid storage features that are 
attractive to most environmental data providers, such as 
NAVOCEANO. 

In the future, NRL-SSC will investigate the inclusion of a 
triangulated irregular network (TIN) storage structure into 
VGRlD to either replace or complement the current 
rectangular grid storage system.' Such adaptive mesh 
structures are likely to become the next generation of grid 
storage that overcomes most of the deficiencies of 
rectangular, regularly spaced grids. In addition, NRI-SSC 
will explore the migration of VGRID to a pure geo-spatial 
database access layer that operates independent of the 
physical file storage format. The layered API hierarchy in 
VGRlD lends itself to a modular file storage API that will 
allow the replacement of the HDFS file format base with a 
more sophisticated Data Base Management System (DBMS). 
Incorporation of an advanced DBMS base will become 
increasingly important as more and more dynamic databases 
are introduced into two-way portal architectures such as 
TEDS. 

The recent strides in low-cost, high-speed computer 
processing combined with major advances in 
communications bandwidth available to Navy ships, aircraft, 
and submarines, have made through-the-sensor 
oceanographic and atmospheric data collection feasible. This 
concept, which exploits the tactical dwell of sonar and radar 
systems, will result in the ability to collect, decimate, and 
store volumetric data for use in Fleet Tactical Decision Aids 
(TDAs). These data types include bathymetry (as noted in 
the PUMA effort), bottom sediment type (via fathometers), 
geoacoustic parameters such as scattering (via sonars), . 
atmospheric refractivity (via radars), and many others. The 
VCRlD effort will undoubtedly play a critical role in the 
development and fielding of these critical new technologies. 
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