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7.1 INTRODUCTION
Increases in the volume and complexity of data hold tremendous potential to unlock new levels of
understanding in critical domains, such as intelligent transportation systems (ITS). The ability to
discover new knowledge from diverse data hinges upon the availability of effective data visualiza-
tion tools. When successful, data visualizations reveal insight through interactive visual representa-
tions of data, exploiting the unmatched pattern matching capabilities of the human visual system
and cognitive problem-solving process [1].

Ideally, we could create systems that automatically discover knowledge from data using data
mining algorithms that require no human input. However, the questions typically asked of data are
often too exploratory for a completely automated solution and there may be trust issues. Data visu-
alization techniques can help uncover patterns and relationships that enable the construction of a
predictive model, permitting automation. When such a solution is discovered, the focus of data
visualization tools shifts from exploration to the confirmation and communication of results. Until
then, users need tools that enable hypothesis formulation by providing access to all the data and not
confining the user to the original idea that prompted the data collection. Indeed, historical reflec-
tions upon some of the most significant scientific discoveries corroborates the notion that profound
findings are often unexpectedly encountered (e.g., Pasteur’s immunization principles, Columbus’
discovery of America) [2]. Conversely, a process that is entirely dependent on human investigation
is not feasible due to the volume and complexity of modern data sets—too much information exists
for a human to investigate manually. Some automated data mining algorithms are needed to guide
the user to potentially significant patterns and reduce the search space, making human-centered
exploratory data analysis feasible.

In light of these challenges, the most viable solution is to provide interactive data visualization
and analysis techniques that combine the strengths of humans with the power of computational
machines. The term used to describe such an approach is visual analytics, which refers to “the sci-
ence of analytical reasoning facilitated by interactive visual interfaces” [3]. Some visual analytics
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goals overlap with those of information visualization and scientific visualization. There are no clear
boundaries between these branches of the more general field of data visualization as each provides
visual representations of data [4]. In this chapter, we focus on data visualization principles in
general, but it is important to note that the three branches are commonly distinguished as follows:

• Scientific visualizations are typically based on physical data, such as the earth, molecules, or
the human body.

• Information visualizations deal with nonphysical, abstract data, such as financial data, computer
networks, text documents, and abstract conceptions.

• Visual analytics techniques emphasize the orchestration of interactive data visualizations with
underlying data mining algorithms, such as machine learning and statistical characterization
techniques.

Data visualization techniques communicate information to the user through visual representa-
tions, or images [4]. At a high level, there are two primary purposes for visualizing data. The first
purpose is to use data visualization to discover or form new ideas. The second purpose is to visu-
ally communicate these ideas through data visualization [5]. By providing a comprehensive view of
the data structure, data visualizations aid in the analysis process and improve the results we can
expect from numerical analysis alone [6]. Despite the potential to transform analysis, designing
effective data visualizations is often difficult. Successful results require a solid understanding of the
process for transforming data into visual representations [4], human visual perception [1,7], cogni-
tive problem solving [1,8], and graphical design [9].

As a subfield of the computer graphics, data visualization techniques use computer graphics
methods to display data via visual representations on a display device. Whereas computer graphics
techniques focus on geometric objects and graphical primitives (e.g., points, lines, and triangles),
data visualization techniques extend the process based on underlying data sets. Therefore, we can
classify data visualization as an application of computer graphics that encompasses several other dis-
ciplines, such as human"computer interaction, perceptual psychology, databases, statistics, graphi-
cal design, and data mining. It is also significant to note that data visualization is differentiated from
computer graphics in that it usually does not focus on visual realism, but targets the effective com-
munication of information [4].

In essence, a data visualization encodes information into a visual representation using graphical
symbols, or glyphs (e.g., lines, points, rectangles, and other graphical shapes). Then, human users
visually decode the information by exercising their visual perception capabilities. This visual per-
ception process is the most vital link between the human and the underlying data. Despite the nov-
elty or technological impressiveness of particular aspects of the encoding process (the
transformation of data values into visual displays), a visualization fails if the decoding (the transfor-
mation of visual displays into insight about the underlying data) fails. Some displays are decoded
efficiently and accurately, while others yield inefficient, inaccurate decoding results [10]. Numerous
examples of poorly designed data visualizations have been examined to form fundamental principles
for avoiding confusing results [11,12]. The key to realizing the full potential of current and future
data sets lies in harnessing the power of data visualization in the knowledge discovery process and
allocating appropriate resources to designing effective solutions.

In this chapter, we introduce the reader to the field of interactive data visualization. We avoid
drawing boundaries between the subfields of visual analytics, scientific visualization, and informa-
tion visualization by focusing on the techniques and principles that affect the design of each within
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the context of the more general knowledge discovery process. Following this introduction section
and a discussion of data visualization in ITS, an illustrative example is discussed to emphasize the
power of data visualization. Then, an overview of the data visualization process is provided, fol-
lowed by a high-level classification of visualization techniques. Next, descriptions of more specific
data visualization strategies are described, namely overview strategies, navigation approaches, and
interactive techniques. To provide practical guidance, these strategies are followed with a summary
of fundamental design principles and an illustrative case study describing the design of
a multivariate visual analytics tool. We conclude with a summary of the chapter, exercises, and a
list of additional resources for further study.

7.2 DATA VISUALIZATION FOR INTELLIGENT TRANSPORTATION SYSTEMS
The subject of this book is ITS, which provide safer and more efficient use of transportation net-
works. Example ITS technologies include car navigation, traveler information, container manage-
ment, traffic monitoring, and weather information. ITS deployment has increased in recent years
due to increased traffic demand, environmental concerns, safety considerations, and increasing pop-
ulation densities of urbanized regions [13]. Recently, the US Department of Transportation
(USDOT) released the ITS Strategic Plan 2015"19 to present near term priorities for ITS research
and development [14]. Major themes of the ITS Strategic Plan include: enabling safer vehicles
and roadways, enhancing mobility, limiting environmental impacts, promoting innovation, and
supporting transportation system information sharing.

Modern ITS systems produce unprecedented amounts of data in many different forms. Along
with data management and data mining, access to innovative data visualization tools is a key
requirement for making sense of this data. As noted in the ITS Strategic Plan, new real-time visual-
ization techniques that “support decision making by public agencies and connected travelers” [14]
are of particular interest. In addition, human factors and human"computer interface research are
needed to avoid distraction in travelers and reveal key associations between multiple heterogeneous
data types. ITS system developers need a comprehensive understanding of data visualization strate-
gies, best practices, and an awareness of the available techniques for turning ITS information over-
load into new opportunities.

7.3 THE POWER OF DATA VISUALIZATION
Data visualizations utilize the highest bandwidth channel between the human and computer. With
approximately 70% of sensory receptors devoted to the human visual system, more information is
acquired through vision than all other sensory inputs combined [1]. By harnessing this vital part of the
human cognitive system, we can dramatically improve the human-centered, knowledge discovery pro-
cess. When successful, data visualizations provide penetrating views of the structure of data making it
much easier to find interesting patterns than data mining methods alone. In addition to allowing rapid
discoveries, data visualization techniques improve the overall accuracy and efficacy of the process.

To demonstrate the power of data visualization, let us consider a specific scenario that high-
lights the role of context in making choices when fitting models to data. The scenario is known as

1677.3 THE POWER OF DATA VISUALIZATION



Anscombe’s quartet and it involves four fictitious data sets, each containing 11 pairs of data (see
Table 7.1) [15]. Statistical calculations of these data sets suggest that they are almost identical. For
example, the mean of the x values is 9.0, the mean of the y values is 7.5, and the variances, regres-
sions lines, and correlation coefficients are the same to at least two decimal places. If we consider
these summary values alone, we might assume they each fit the statistical model well.

However, when these data sets are visualized as scatterplots with a fitted linear regression line
(see Fig. 7.1), the truth is revealed. While the scatterplot for data set A conforms well to the statisti-
cal description and shows what appears to be two appropriate linear models, the others do not fit
the statistical description as well. The scatterplot for data set B suggests a nonlinear relationship.
Although the scatterplot for data set C does reveal a linear relationship, one outlier exerts too much
influence on the regression line. We could fit the correct linear model to the data set by discovering
and removing the outlier. The scatterplot for data set D shows a situation where the slope of the
regression line is influenced by a single observation. Without this outlier, it is obvious that the data
does not fit any kind of linear model. Data sets B, C, and D reveal strange effects that we may
encounter in subtler forms during routine statistical analysis. This example illustrates the impor-
tance of visualizing data during statistical analyses and the inadequacy of basic statistical properties
for describing realistic patterns in data.

Anscombe published this case study to demonstrate the importance of studying both statistical
calculations and data visualizations as “each will contribute to understanding” [15]. At the time this
work was published, data visualizations were underutilized in both statistical textbooks and soft-
ware systems. Although data visualizations are now more heavily used, there are still situations
where an analyst will first seek to reduce the data set, especially those that are large and complex,
to a few statistical values such as means, standard deviations, correlation coefficients. Although
these numerical values can be helpful, if the values are examined without considering visualizations
of individual data values, we end up with a small set of numbers that disproportionately influence

Table 7.1 The Four Data Sets From Anscombe’s Quartet [15] Are Listed. The Statistical
Properties of These Data Sets Are Nearly Identical, Despite the Clear Value Differences

A B C D

x y x y x y x y

10.0 8.04 10.0 9.14 10.0 7.46 8.0 6.58

8.0 6.95 8.0 8.14 8.0 6.77 8.0 5.76

13.0 7.58 13.0 8.74 13.0 12.74 8.0 7.71

9.0 8.81 9.0 8.77 9.0 7.11 8.0 8.84

11.0 8.33 11.0 9.26 11.0 7.81 8.0 8.47

14.0 9.96 14.0 8.10 14.0 8.84 8.0 7.04

6.0 7.24 6.0 6.13 6.0 6.08 8.0 5.25

4.0 4.26 4.0 3.10 4.0 5.39 19.0 12.50

12.0 10.84 12.0 9.13 12.0 8.15 8.0 5.56

7.0 4.82 7.0 7.26 7.0 6.42 8.0 7.91

5.0 5.68 5.0 4.74 5.0 5.73 8.0 6.89
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the resulting judgments and we may introduce errors similar to those exemplified in Anscombe’s
quartet. As Cleveland states, “this approach tends throws away the information in the data” [10].
Of all the advantages of data visualization in the present era of expanding data, the capability to
conduct holistic data analysis is paramount as it permits the exploration of overall patterns and
highlights detailed behavior. Data visualization is unique in its capacity to thoroughly reveal the
structure of data.

7.4 THE DATA VISUALIZATION PIPELINE
The data visualization pipeline refers to the methodical process of generating graphical images
from raw data. As shown in Fig. 7.2, the process starts with the raw data, ends with the user, and
involves a series of transformations in the intermediate stages [4]. The data visualization pipeline

(A) (B)

(C) (D)

FIGURE 7.1

When visualized as scatterplots, Anscombe’s quartet shows very different structures as compared to the nearly

identical statistical descriptions of the four individual data sets. The labels (A, B, C, and D) are referenced to the

columns (with the same labels) that are listed in Table 7.1.

1697.4 THE DATA VISUALIZATION PIPELINE



utilizes the underlying computer graphics pipeline to yield visual representations for subsequent
output on a display device. Furthermore, the data visualization pipeline is commonly used in con-
junction with a knowledge discovery pipeline, which produces a model of the data instead of a
visual display. The visual analytics process couples the knowledge discovery and data visualization
pipelines.

The visualization process starts with a data set that the user wishes to analyze. The data set may
originate from many sources and they may be simple or complex. The user may want to utilize a
data visualization technique to discover interesting phenomenon (e.g., anomalies, clusters, or
trends), confirm a hypothesis, or communicate analysis results to an audience. Typically, the data
must be processed before it can be visualized to deal with missing values, data cleaning, normaliza-
tion, segmentation, sampling and subsets, and dimensionality reduction. These processes can dra-
matically improve the effectiveness of data visualizations, but it is important to disclose how the
data are processed to avoid false assumptions.

The visualization pipeline converts data into visual images that users can study [5]. As shown in
Fig. 7.2, the raw data are first transformed into data structures, which store entities associated with
the raw data values. Data processing algorithms may be executed to modify the data or create new
information. Derived information from analytical algorithms, such as clustering or machine learning,
can be useful for assisting the user in discovering new knowledge and reducing the search space
[16]. Visual mappings transform the data structures into graphical elements that utilize spatial lay-
outs, marks, and visual properties. The view transformations create images of the visual structures
using visual parameters, such as locations, scaling, and clipping, for eventual display to the user.
Various view transformations, such as navigation, are also provided.

The visualization pipeline ultimately transforms data values into glyphs and their visual attri-
butes (e.g., color, size, position, and orientation). As shown in Fig. 7.3, a list of numerical values
can be rendered in an image with one variable mapped to the y-axis and another mapped to the x-
axis. Alternatively, we could map the data values to the height of a bar or the color of a circle to
produce a different visualization.

As the user views the resulting images, the human visual system works to decode the underlying
information. User interaction is possible with any of the stages of the visualization process to mod-
ify the resulting visualization and form new interpretations. In modern data visualization systems,
this process is dynamic as the user controls most of the stages. Such interactive capabilities
allow the user to customize, modify, and interactively refine visualizations to achieve a variety of

FIGURE 7.2

The data visualization pipeline is a systematic process that converts data into interactive visual images.

Source: Diagram adapted from S.K. Card, J.D. Mackinlay, B. Shneiderman, Readings in Information Visualization: Using Vision to

Think, Morgan Kaufmann Publishers, San Francisco, CA, 1999.

170 CHAPTER 7 DATA VISUALIZATION



objectives [4]. This entire process comprises a data visualization. To gain deeper understanding
of the visualization pipeline the reader is encouraged to study material devoted to more in-depth
coverage [1,4,5].

7.5 CLASSIFYING DATA VISUALIZATION SYSTEMS
Classification schemes for data visualization techniques assist designers in choosing appropriate
strategies for designing new techniques. In this section, we provide a brief overview of a classifica-
tion scheme introduced by Keim that is based on three main dimensions: the data that will be visu-
alized, visualization techniques, and the interaction and distortion methods [17]. This classification
is similar to Shneiderman’s task taxonomy system [18], but Keim’s scheme includes visualization
techniques not included in other attempts to classify visualizations. Below we list the components
for each dimension in Keim’s classification scheme.

Visualization data types include:

• One-dimensional, such as the time series data visualized in Matisse [19].
• Two-dimensional, such as geographical maps as visualized in Exploratory Data analysis

Environment (EDEN) [20].
• Multidimensional, such as tabular data in Polaris [21] and EDEN [20,22].
• Text and hypertext, such as textual news articles and documents shown in ThemeRiver [23].

FIGURE 7.3

The scatterplot is an efficient visualization technique for analyzing bivariate relationships. In this figure, the MPG

(Miles Per Gallon) variable is mapped to the x-axis and the weight variable is mapped to the y-axis revealing a

negative correlation. To alleviate over-plotting issues the points are rendered as semi-transparent, unfilled circles.
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• Hierarchies and graphs, such as the Scalable Framework [24].
• Algorithms and software, such as the lines of code representations in SeeSoft [25].

Visualization techniques may be

• Standard two- or three-dimensional displays, such as bar charts and scatterplots [26].
• Geometrically transformed displays, such as parallel coordinates [27].
• Icon-based displays, such as needle icons and star icons in MGV [28].
• Dense pixel displays, such as the recursive pattern and circle segments techniques [29].
• Stacked displays, such as TreeMaps [30] or dimensional stacking [31].

Interaction and distortion techniques may be

• Interactive projections, as utilized in the GrandTour system [32].
• Interactive filtering, as utilized in EDEN [20] and Polaris [21].
• Interactive zooming, as utilized in Pad11 [33], MGV (Massive Graph Visualizer) [28], and the

Scalable Framework [24].
• Interactive distortion, as utilized in the Scalable Framework [24].
• Interactive linking and brushing, as utilized in MDX (Multivariate Data eXplorer) [22] and

Polaris [21].

Keim notes that the three dimensions of this classification can be used in conjunction with one
another [17]. That is, the visualization techniques can be combined with one another and include
any of the interaction and distortion techniques for all data types. This classification provides an
overview of the many techniques that have been introduced in the data visualization literature.
Further study of any of the dimensions described above will reveal a variety of extensions to the
techniques as well as particular applications in many different domains.

7.6 OVERVIEW STRATEGIES
The size of modern data sets creates a fundamental challenge in designing effective data visualiza-
tion methods. Due to the increased quantity and a limited number of pixels in display devices, it is
often impossible to visualize all the raw data. Even if a sufficient number of pixels are available, it
might not be beneficial to show all the data in any single view as visual perception may be hindered
by visual crowding [34]. One approach for large data sets is to show the full details of a small
number of items in the visualization. This approach is often called the keyhole problem, as it is like
looking through a small keyhole into a large room [35]. For instance, in a spreadsheet with 1000
rows, the visible portion may be limited to 50 rows at any point in time. To access the additional
950 rows of data the user must page or scroll through the spreadsheet. Although this approach helps
manage large amounts of data, the user inevitably loses context.

Shneiderman introduced an enduring design strategy that is succinctly summarized by the phrase
“overview first, zoom and filter, then details on demand” [18]. By following this approach, we can
avoid the keyhole problem by beginning analysis with a broad overview of the entire data set, which
necessarily involves sacrificing some details. Interaction techniques are coupled with the visualiza-
tion to allow the user to zoom in on specific information and filter out irrelevant items. Furthermore,
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the system provides mechanisms to quickly retrieve and display detailed information for particular
data items of interest. This approach is an excellent design pattern for constructing visualization sys-
tems as it offers several advantages [35]:

• It fosters the formulation of mental models of the larger information space.
• It provides broad insight by revealing relationships between segments of the information.
• It provides direct access to specific segments of the data through intuitive selections from the

overview.
• It encourages free exploration of the entire data space.

User studies have demonstrated that this strategy improves user performance in various informa-
tion seeking tasks [36,37]. While seeking to maintain a clean and noncluttered experience, the
designer should strive to pack as much of the data into the overview visualization as possible [12].
The effectiveness of the overview hinges upon the decision about which data to show in the over-
view and which data to save for the detail views that are reachable only through user interactions.
Furthermore, it is important to make the interactions as intuitive as possible to foster efficient utili-
zation. Ideally, the overview will provide information scent that will attract the user to important
details that lie within [38].

In general, there are two approaches that are possible for condensing large amounts of data into a
limited number of pixels. One approach is to reduce the data quantity before the visual mapping pro-
cess. The other method involves decreasing the physical size of the display glyphs that are produced
during the visual mapping process [35]. In the following sections, we will discuss both strategies.

7.6.1 DATA QUANTITY REDUCTION

Aggregation methods are used to group data items based on similarities and represent the group
using a smaller amount of data. Each aggregate replaces the representation of all the data items that
are used to form it. Ideally, the new group maintains a reasonable representation of the underlying
data. A classic example of this approach is the histogram (see Fig. 7.4), which uses aggregation to
represent the frequency distribution of a variable [39].

Data items may be grouped by common attributes [21], or more sophisticated techniques such
as clustering methods [40] or nearest neighbors. When choosing the representative values for the
aggregates, the values should accurately characterize of the underlying aggregate members. Often,
certain statistical values, namely the mean, median, minimum, maximum, and count, are utilized.
In some cases the aggregations are performed iteratively to yield hierarchical structures with multi-
ple grouping levels [41]. The final step is to choose a visual representation of the aggregates that
logically depicts the contents. As noted by Ward et al. [4], it is important to design the visual repre-
sentation to provide sufficient information for the user to decide whether they wish to drill-down to
explore the contents of a group.

As an alternative approach to data aggregation, dimensionality reduction techniques decrease
the count of attributes in multidimensional data sets to more easily visualize the information [42].
The reduced attribute set should preserve the main trends and information found in the larger data
set. This reduction can be achieved manually by providing the user with an interactive mechanism
for choosing the most important dimensions, or through computational techniques such as principal
component analysis (PCA) or multidimensional scaling (MDS). With PCA the data items are
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projected to a subspace that preserves the variance of the data set. MDS employs similarity mea-
sures between entities to create a one-, two-, or three-dimensional mapping where similar items are
grouped together [4]. The designer must understand that notably different results may be produced
by dimensionality reduction techniques depending on the execution parameters and computational
variations. Furthermore, although the groupings may make sense from an algorithmic standpoint, it
can be difficult to decode the results and cognitively relate the reduced representation to the origi-
nal dimensions of the data.

7.6.2 MINIATURIZING VISUAL GLYPHS

Another approach for dealing with a limited number of pixels is to decrease the physical size of the
visual glyphs in the visualization. Tufte promotes an increase in the data density of visual displays
by maximizing the data per unit area of screen space and the data to ink ratio [12]. Tufte uses the
term ink because most of his examples are from print media. For our purposes, we can replace the
term ink with the more modern term pixel without losing the main point. To achieve a higher data
to pixel ratio, we minimize the number of pixels needed to display each visual glyph and we elimi-
nate pixels that encode unimportant, nondata items.

FIGURE 7.4

The histogram is a classic visualization technique that reduces the quantity of data displayed and provides a

statistical summary of the frequency distribution for a single variable. In this example, a mouse hover interaction

provides the details for a bin of interest.
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An example of the miniaturization approach is the SeeSoft system, which displays an overview
of software source code [25]. With SeeSoft, each line of code becomes a line of colored segments
where the line length represents the character count. The system is effective in visualizing large
source code collections with thousands of lines in a single view. In addition, pixels are color-coded
to reveal other attributes such as the author, testing status, or the CPU execution time of the line.
The Information Mural miniaturizes data to subpixel scales [43]. When several glyphs overlap one
another, the Information Mural is used to show the density of the glyphs in a manner similar to an
X-ray image. The effect is similar to the use of opacity in representing dense parallel coordinate
plots, as shown in Fig. 7.5 from the EDEN visual analytics system.

7.7 NAVIGATION STRATEGIES
The ability to navigate large information spaces is a basic requirement for interactive data visuali-
zation systems. From broad overviews to detailed snapshots, navigation techniques allow the user
to move between different levels of detail in the data. Three main approaches enable data visualiza-
tion navigation, namely zooming and panning, overview1 detail, and focus1 context. In the
visualization pipeline (see Fig. 7.2), these techniques reside in the third stage, the view transforma-
tion. They are comparable to the detail-only approach, which omits an overview. Instead the user

FIGURE 7.5

The EDEN is a multivariate visual analytics tool that uses multiple linked views with a central parallel

coordinates plot. In this figure the 1983 ASA cars data set is visualized with the MPG axis selected. A strong

negative correlation between the MPG and Weight axes is apparent from the X-shaped line crossing pattern. The

more horizontal lines between the MPG and Year axes suggest a positive correlation.
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employs scroll or pan navigation actions to view other segments of the information space as
described in the prior section with the spreadsheet viewport. The detail-only approach should be
avoided as it may disorient the user due to the absence of an overview of the larger information
space [35]. Although experimental results demonstrate the superior performance of these navigation
strategies over the detail-only strategy, attempts to compare the three approaches are inconclusive
and subject to specific design scenarios, data, and user tasks [37].

7.7.1 ZOOM AND PAN

Data visualizations that allow zoom and pan operations begin with an overview and permit the user
to interactively zoom into the data and pan the viewpoint within the data space to access details of
interest. Card et al. use the term “panning and zooming” in their listing of interaction techniques
and hint at the similarities with camera movement and zoom actions [5]. Zooming may be imple-
mented using continuous space navigation as the Pad11 system [33] provides, or as a mechanism
to systematically access different scales as with the TreeMap system [44].

In addition to geometric zooming, another form of the zoom operation is called semantic zoom-
ing [33]. As the magnification of an object changes during the geometric zoom into the data space,
the representation of the visual objects is changed to include more details or different aspects of the
underlying data. For example, when a visual object representing a text document is small in the
visualization the user may only want to see the title. As the user zooms into the data space, the title
may be augmented by a short summary or outline.

The ability to interactive drill-down to details of interest from an overview is one of the main
advantages of this approach. In addition, the approach efficiently uses screen space and offers infi-
nite scalability. On the other hand, one of the primary issues with the zooming strategy is that users
may become disoriented and lost when zooming in and panning around the data space, since the
overview is not shown. The approach can also yield slower navigation than other comparable navi-
gation techniques [35].

7.7.2 OVERVIEW1 DETAIL

The overview1 detail strategy employs multiple views to display both an overview and a detail
view simultaneously. The aim of this approach is to preserve the context of the entire data set,
while the user examines detailed information about a particular region of interest. Context is pre-
served using a graphical indicator drawn within the overview. This field-of-view indicator reveals
the relative location that is currently shown in the detail view. When the indicator is manipulated
in the overview, the detail view is updated to reflect the new location. Likewise, user navigation
actions in the detail view causes the field-of-view indicator to update to provide contextual aware-
ness. This strategy is often utilized in both map and image viewing systems [45].

Although overview1 detail maintains the overview and avoids disorientation in the detail view,
a visual discontinuity between the overview and the detail view may be experienced [35]. Another
issue with the approach is that the views consume the display area and the overview, although visi-
ble, is generally limited a small part of the overall display. Nevertheless, the overview1 detail
approach provides a constant awareness of the whole and is scalable through linked views.
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7.7.3 FOCUS1 CONTEXT

Rather than utilizing separate views of the data, the focus1 context strategy allows the focus region
to grow inside the overview area. The focus region is expanded and magnified to show additional
details for the region of interest. The focus area can be manipulated like a sliding window to navigate
within the overview and view details of other regions of the information space. To accommodate for
the expanded focus area, partial compression is applied to the overview areas using distortion and
warping techniques. This strategy is referred to as a fisheye lens [46] or distortion-oriented [47] dis-
play. In most implementations the focal point of the view is magnified the most and the magnifica-
tion factor drops based on the distance from the focal point.

Several variations of the focus1 context strategy are described for both one- and two-dimensional
spaces including the bifocal display [39], which uses two levels of magnification. The bifocal display
concept is used in TableLens [48] and the familiar dock of application icons in desktop operating sys-
tems. The Perspective Wall employs perspective wrap techniques to display data on three-dimensional
surfaces [49]. Wide-angle lens creates a visual fisheye effect, such as hyperbolic trees [50]. In addi-
tion to two-dimensional applications, fisheye lens can be applied to three-dimensional visualizations
[51]. Using more complex distortion techniques, nonlinear effects yield a bubble effect [52].
Focus1 context screens use resolution distortion to match the human visual system [53].

An advantage of the focus1 context strategy is that it provides a continuity of detail within the
context of the overview. However, users may experience disorientation caused by the distortion
methods and the technique has limited scalability, typically under a 10:1 zoom factor [35].

7.8 VISUAL INTERACTION STRATEGIES
Visual interaction strategies support scalability and human-centered exploration of visualized infor-
mation. In order to alleviate the fact that it is generally impossible to show all the data for even
modest data volumes, these techniques allow users to dynamically access alternative perspectives
and insights. There are many interaction techniques for data visualizations [4] and the main catego-
ries should be considered in the design of visualization systems.

7.8.1 SELECTING

The capability to interactively select items of interest in a visualization is fundamental. Selection
actions are useful for many scenarios, such as detailed investigations (details on demand),
highlighting occluded items in a dense view, grouping similar items into a set, or item extraction.

Generally, a user selects items using either direct or indirect actions. Direct manipulation
actions allow users to directly select particular items. That is the user interacts with the visualiza-
tion without using typed commands. As such, this approach connects humans and machines using a
more intuitive visual interaction metaphor and omits the need to translate ideas into textual syntax
[54]. Direct selections are implemented in a variety of ways, such as pointing at individual items’
glyphs or lassoing a group of glyphs [55]. For example, EDEN (see Fig. 7.5) enables users to study
tabular data using a parallel coordinates visualization [27] by directly dragging numerical ranges on
variable axes via mouse-based interactions with the display.
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Another method of selection is achieved through indirect selection criteria based on the user’s set
of constraints. For example, the XmdxTool [31] allows users to select value ranges in tabular
data visualized using parallel coordinates and separate input components. Other examples of indirect
selection techniques include selecting graph nodes with a user-defined distance from another node [4].

Successful selection techniques allow users to easily select items, add items to a selection,
remove selected items, and clear selections completely. Selection is often referred to as brushing
since it is similar to stroking visual objects with an artist’s brush.

7.8.2 LINKING

Linking techniques are used to dynamically relate information between multiple views [36,56].
Using separate views the underlying data are visualized differently revealing alternative perspec-
tives or different portions of the data. Brushing and linking is the most common view coordination
strategy [57]. With this approach, selections made in one view are distributed to other views, where
the corresponding items are highlighted, enabling users to uncover relationships and construct com-
prehensive understandings of the data set. When designed with complementary views, this approach
helps the user to capitalize on the strengths of different visual representations to reveal particular
relationships. Another advantage of linked brushing is that it allows the user to define complex con-
straints on one’s selections. In addition to highlighting certain types of data, each view can be opti-
mized for specifying constraints on certain data types and degrees of accuracy [4]. For instance the
user might specify temporal constraints with a timeline visualization, geographic constraints with a
map, and categories of interest using a list of string values.

A diverse range of options for connection and communication between different linked views
are available to maximize the flexibility of this strategy. A user may need the option to unlink one
view of the data to explore a different region of the data or a different data set. Some systems offer
the flexibility to specify which views transmit information to other views as well as which views
receive information. A user may also desire the ability to specify what type of information is com-
municated. Finally, some types of interactions only make sense for certain views, while others can
be universally applied to all views [4].

7.8.3 FILTERING

Interactive filtering operations allow the user to reduce the quantity of data visualized and focus on
interesting features. Dynamic visual queries apply direct manipulation principles for querying data
attributes [58]. Visual widgets, such as one- or two-handle sliders, are used to specify a range of
interest and immediately view the filtered results in the visualization. Another widget may allow the
user to choose items from a list to show or hide the related visual items. In addition to providing a
way to filter the data the widgets also provide a graphical representation of the query parameters.

Dynamic query filters provide rapid feedback, reduce the quantity of information, and permit
exploration of the relationships between attributes. The rapid query feedback also alleviates zero-
or mega-hit query scenarios as the parameters can be adjusted to fine tune the number of matching
hits. An example of the dynamic query technique is Magic Lenses, which provides spatially local-
ized filtering capabilities [59]. Another example is the Filter Flow technique, which allows the user
to create virtual filters pipelines for more sophisticated queries involving Boolean operations [60].
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There is a subtle but important distinction between filtering and selection followed by deletion.
Filtering is usually achieved via some indirect action with a separate user interface component or
dialog box. Filtering may also be executed prior to viewing large data sets to avoid overwhelming
the system. On the other hand, selection is typically performed in a direct manner whereby the user
selects visual objects in the view using gestures, such as mouse clicks. The mechanism is different,
but the resulting effect of direct selection on the view can be indistinguishable from a filtering
operation [4].

7.8.4 REARRANGING AND REMAPPING

It is important to provide users with the ability to customize the visual mapping form or choose
from a selection of mappings as a single configuration may be inadequate. Since the spatial layout
is the most salient of the available visual mappings, the ability to spatially rearrange visual attri-
butes is the most effective mechanism for revealing new insight. For example, TableLens [48] users
can spatially reconfigure the view by choosing a different sorting attribute, and EDEN [20] pro-
vides the user with the ability to rearrange the order of parallel coordinates axes. This simple but
important operation allows users to flexibly explore relationships between different attributes in a
manner that best suits their needs.

7.9 PRINCIPLES FOR DESIGNING EFFECTIVE DATA VISUALIZATIONS
Although developing an interactive data visualization is relatively straight-forward, creating an
effective solution is difficult. In this section, we review several principles that can be followed to
avoid common issues and increase the efficacy of data visualization designs. For a more complete
investigation of design principles the reader is encouraged to review the authoritative works on this
important topic [10,12,26].

Strive for Graphical Excellence. Tufte advocated several guidelines to help the designer achieve
graphical excellence through which “complex ideas are communicated with clarity, precision, and
efficiency” [12]. The first guideline is to always show the data, which is exemplified by
Anscombe’s quartet (see Fig. 7.1). Tufte also encouraged the display of many data items in a small
space, while also ensuring that visualizations of large data sets are coherent. It is also helpful to
guide the user to different pieces of information. With visual analytics, this guided exploration is
achievable with machine learning algorithms that infer user intent. Another guideline is to design
visualizations that encode information at different levels of detail, from broad overviews to detailed
representations.

Strive for Graphical Integrity. Tufte believed that visualizations should tell the truth about the
data and analyzed many examples of graphics that failed to do so [12]. Sometimes the failures
are intentional [61] and other times they may simply result from honest mistakes. Regardless of the
cause, the perceived differences in graphical representations should be comparable to the relation-
ship that exist in the data. For example, failures to tell the truth in visualizations occur when scales
are distorted, axis baselines are omitted, and the context for regions of the data are not provided.
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Maximize Data-Pixel Ratio. Tufte’s principle to maximize the data-ink ratio [12] applies equally
to pixels on a display device. The main idea is to allocate a large portion of the pixels to present
data-information. Tufte used the term data-ink to refer to the “non-erasable core of a graphic, the
non-redundant ink arranged in response to variation in the numbers represented” [12]. We should
avoid showing visual objects that do not depict the data as they can reduce the effectiveness of the
visualization and produce clutter. For example, a thick mesh of grid lines in a scatterplot can drasti-
cally reduce the ability to make sense of the underlying relationships. If grid lines are necessary,
use low contrast colors that do not interfere with the graphical items representing the data [62].
A related strategy is to remove all nondata pixels and all redundant data pixels, to the extent
possible. We should avoid nonessential redundancies and gratuitous decorations, which detract
from the main point of the visualization.

Utilize Multifunctioning Graphical Elements. Tufte encourages the designer to look for ways to
convey information in graphical elements that may normally be left to nondata-ink representations
[12]. For example, we can use the axes of a scatterplot to represent the median and interquantile
range for each variable to provide summary statistics in the context of the raw data points and visu-
ally bound the extent of the scatterplot display area. In designing multifunctioning elements the
designer must be continually aware of the danger of making “graphical puzzles” that are difficult
to interpret [12].

Optimal Quantitative Scales. Few [26] suggests several rules for representing quantitative scales
in data visualizations: With bar graphs the scale should begin at zero and end a small amount above
the maximum value. With other graphs (not bar graphs) the scale should begin a small amount
below the minimum value and end a small above about the maximum value. One should also use
round numbers at the beginning and end of the scale, and use round interval numbers as well.

Reference Lines. Another of set suggestions mentioned by Few [26] are related to reference
lines. Few suggests providing a mechanism to set reference lines for specific values (e.g., an ad hoc
calculation or statistical threshold). It is also helpful to automatically calculate and represent the
mean, median, standard deviation, specific percentiles, minimum, and maximum. Few recommends
labeling reference lines clearly to indicate what they represent and allowing the user to format ref-
erence lines as necessary (e.g., color, transparency, weight).

Support Multiple Concurrent Views. Few suggests the simultaneous use of multiple views of the
data from different perspectives, which improve the analysis process and alleviates the issues
related to the limited working memory of humans [26]. He lists several guidelines for using multi-
ple concurrent views:

• Allow the user to easily create and connect multiple views of a shared data set on a single
display.

• Provide the ability to arrange the view layouts as necessary.
• Provide filtering capabilities.
• Provide brushing capabilities for selecting subsets of data in one view and automatically

distributing the selection by highlighting the selected data in the other views.
• If a subset of data is selected in one view that is associated with a bar or box in a graphic, only

highlight the portion of the bar or box that represents the subset.

Provide Focus and Context Views Simultaneously. Few also offers guidelines related to the
presentation of a focus1 context scheme [26]. While viewing a subset of a larger data set, allow
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the user to simultaneously view the subset as a part of the whole. Few also recommends allowing
the user to remove the context view to reclaim space as necessary.

Techniques for Alleviating Over-Plotting Issues. When multiple visual objects are represented
in a graphic, the representations commonly are rendered over one another. This situation results in
varying degrees of occlusion and makes it difficult or impossible to see the individual values. Few
provides several practical strategies for avoiding this problem [26]:

• Allow the user to reduce the size of the graphical objects.
• Allow the user to remove the fill color from visual objects (e.g., circles, triangles, rectangles).
• Allow the user to select from a collection of simple shapes for encoding the data.
• Allow the user to jitter the data objects’ positions and control the amount of jitter introduced.
• Allow the user to make data objects semi-transparent.
• Allow the user to aggregate and filter the data.
• Allow the user to segment the data into a series of views.
• Allow the user to apply statistical sampling to reduce the quantity of data objects that are

displayed.

Provide Clear Understanding in Captions. Cleveland suggests that we strive for clear under-
standing when communicating the major conclusions of our graphs in captions, which applies more
to graphs that appear in written documents. These graphs and their captions should be independent
and include a summary of the evidence and conclusions [10]. To this end, Cleveland provides three
points for figure captions:

• Describe everything graphed.
• Call attention to the important features of the data.
• Describe conclusions drawn from the graphed data.

7.10 A CASE STUDY: DESIGNING A MULTIVARIATE VISUAL
ANALYTICS TOOL

In this section, we discuss the design of a multivariate visual analytics tool, called EDEN [20].
As shown in Fig. 7.5, EDEN was originally designed to allow exploratory analysis of large and
complex climate simulations. Through years of iterative development, EDEN has evolved into a
general purpose system for exploring any multivariate data set consisting of numerical data. In the
remainder of this section, we will look at some of the features of EDEN and relate them back to
the ideas introduced in this chapter. Figures of EDEN in this section utilize a popular multivariate
data set from the 1983 ASA Data Exposition1 describing automobile characteristics of different
models and the US Department of Energy fuel economy data set.2

1The 1983 ASA cars data set can be downloaded at http://stat-computing.org/dataexpo/1983.html.
2The US DOE fuel economy data set can be downloaded at http://www.fueleconomy.gov/.
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7.10.1 MULTIVARIATE VISUALIZATION USING INTERACTIVE PARALLEL
COORDINATES

EDEN provides a highly interactive visualization canvas that is built around a central parallel coor-
dinates plot. The parallel coordinates technique was chosen as the primary view because it allows
visual analysis of trends and correlation patterns among multiple variables. The parallel coordinates
plot is an information visualization technique that was first popularized by Inselberg [63] to visual-
ize hyper-dimensional geometries, and later demonstrated in the analysis of multivariate data rela-
tionships by Wegman [64]. The parallel coordinates technique creates a two-dimensional
representation of multidimensional data sets by mapping the N-dimensional data tuple C with coor-
dinates (c1, c2, . . ., cN) to points on N parallel axes, which are joined with a polyline (see Fig. 7.6)
[27]. Although the number of attributes that can be shown in parallel coordinates is only restricted
by the horizontal resolution of the display device, the axes that are located next to one another yield
the most obvious insight about variable relationships. To analyze relationships between variables
that are separated by one or more axes, interactions and graphical indicators are necessary.

7.10.2 DYNAMIC QUERIES THROUGH DIRECT MANIPULATION

The user can perform dynamic visual queries by directly brushing value ranges using standard
mouse-based interactions. As shown in Fig. 7.7 the user can click on the interior of any parallel
coordinate axis to define a selection range. This action causes lines that intersect the range to dis-
play with a more visually salient color, while the other lines are assigned a lighter color that con-
trasts less with the background. Although the nonselected lines can be hidden entirely, their
presence in a muted form provides context for the focus selection. The yellow selection ranges can
be translated by clicking and dragging the selection rectangle. Multiple selection ranges can be cre-
ated to visually construct Boolean AND queries. All query operations are performed directly
through interactions with the visualization canvas.

FIGURE 7.6

The polyline in a parallel coordinates plot maps the N -dimensional data tuple C with coordinates (c1, c2, . . ., cN)
to points on N parallel axes which are joined with a polyline whose N vertices are on the Xi-axis for i5 1, . . ., N.
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7.10.3 DYNAMIC VARIABLE SUMMARIZATION VIA EMBEDDED VISUALIZATIONS

Each vertical axis in a parallel coordinates visualization represents a single variable in the data set.
For example, the car data set shown in Fig. 7.7 contains eight variables. The axes are augmented
with embedded visual cues that guide the scientists’ exploration of the information space [65].
Certain key descriptive statistics are graphically represented in the interior boxes for each axis. The
wide boxes (see 5 in Fig. 7.8) represent the statistics for all axis samples, while the narrower boxes
(see 4 in Fig. 7.8) represent the samples that are currently selected. The statistical displays can be
modified to show the mean-centered standard deviations (see left axis in Fig. 7.8) or a box plot
with whiskers (see right axis in Fig. 7.8). In the standard deviation mode the box height encodes
two standard deviations centered on the mean, which is represented by the thick horizontal line at
the center of the box (see 4a, 5a in Fig. 7.8). In the box plot mode the box height represents the
interquantile range and the thick horizontal line shows the median value. Additionally, the whisker
lines (see 4b, 5b in Fig. 7.8) are shown in the box plot mode. Frequency statistics are shown on
each axis as histogram bins (see 3 in Fig. 7.8) with widths representing the number of polylines
that cross the bin range on the variable axis.

7.10.4 MULTIPLE COORDINATED VIEWS

As the user forms visual queries in the parallel coordinate plot, the interactions are shared with
other data views. One of these views includes a row of scatterplots shown below the axes.

FIGURE 7.7

Using the 1983 ASA cars data set a range query is set on the upper portion of the MPG axis to highlight the most

fuel efficient cars. The graphical indicators of the summary statistics show the distribution trends for the selection

and the individual lines are rendered with a more visually salient color.
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In Fig. 7.9 a linked view in EDEN is shown using the US DOE fuel economy data set. Here a
selection on the cylinders axis highlights the polylines representing vehicles with eight or more
engine cylinders. The youSaveSpend axis is highlighted (indicated by the blue label) resulting in
scatterplots that map the youSaveSpend variable to each scatterplot’s x-axis and the variable repre-
senting the axis above each scatterplot to the scatterplot’s y-axis (see 7 in Fig. 7.8).

The scatterplots augment the parallel coordinates visualization by revealing additional
patterns such as nonlinear trends, thresholds, and clusters. The scatterplots are linked to the other

FIGURE 7.8

In EDEN, the parallel coordinate axes are augmented with graphical indicators of statistical values, correlation

measures, and brushing indicators. In this figure the numbered annotations highlight specific features of the axis

components.

184 CHAPTER 7 DATA VISUALIZATION



visualizations so that the shading configuration of the points reflects the current multivariate
query in the parallel coordinates display and vice versa. As shown in Fig. 7.9, users may access a
separate scatterplot window with more detail by double-clicking on one of the scatterplots below
the parallel coordinates axes. Moreover, the user can select data points in the scatterplot window
and these selections are distributed to the other views. An additional linked view is the correlation
matrix (shown in the lower left corner of the main window) and correlation vectors (shown beneath
each axis label). As the user interacts with the display, the underlying correlation coefficients
are recalculated and remapped to the diverging color scale. The automated statistical algorithms
guide the user to the most promising relationships and feed auto arrangement and clustering
algorithms.

7.11 CHAPTER SUMMARY AND CONCLUSIONS
As data volumes and complexities increase in ITS, interactive data visualization will continue to
play a vital role in transforming information into new knowledge. To successfully design data visu-
alization tools, the designer must understand the available techniques and principles that lead to
effective data visualization solutions.

An effective way to master the art of data visualization is to engage in practical data visualiza-
tion exercises. Beginning with a data set of interest, one can practice implementing appropriate
visualization techniques and human-centered interaction schemes. The chapter exercises provide a

FIGURE 7.9

EDEN uses multiple coordinated views to foster more creative analysis of multivariate data. Using the US DOE

fuel economy data, vehicles with 8 or more engine cylinders are selected. The selection propagates to the other

linked views, such as the scatterplot at right, where the corresponding items are also highlighted. The scatterplot

highlighting shows that vehicles with 8 or more engine cylinders have low-combined fuel economy and cost more

to operate.
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good starting point for such an endeavor. Then, one should look for ways to improve the visualiza-
tion through new representations, interactive manipulations, or automated analytical algorithms.
When designing for a particular domain, like ITS, the developer should strive to include domain
experts in the design process and evaluate user performance early and often.

This chapter provides an introduction to data visualization that will help initiate such practical
application developments. We encourage the reader to explore data visualization in greater detail
by studying the wealth of material available, some of which are referenced in this chapter. In addi-
tion to these references, we provide a listing of venues for data visualization material. Armed with
this new knowledge and practical experience, you will soon be producing indispensable tools that
will amplify human cognition and help realize the full potential of ITS data.

7.12 EXERCISES
For the following exercises, any data set or programing language may be used. The cars data set,
which is used in this chapter’s case study, can be downloaded at http://stat-computing.org/dataex-
po/1983.html.

Exercise 1: Develop a visualization tool that reads a listing of values for a variable and produces
a histogram plot similar to the one shown in Fig. 7.4. Then, add interaction capabilities to the tool
by allowing the user to select a particular bin to show the detailed numerical values (e.g., counts,
value spread, mean, standard deviation). In your own words, discuss the advantages and disadvan-
tages of data quantity reduction in data visualization.

Exercise 2: Develop a tool that reads a table of data and produces a scatterplot using two user-
defined variables similar to the scatterplot shown in Fig. 7.3. Allow the user to interactively change
the variables that are mapped to the x and y axes. Allow the user to select a third variable to map
to the size or color of the scatterplot points. Describe an alternative method to encode a fourth vari-
able in the scatterplot visualization. What issues would do you expect to encounter by encoding 4
or more variables in a single visualization?

Exercise 3: Develop a tool that reads in a table of data and produces a parallel coordinates plot
of all the variables similar to the EDEN tool shown in Fig. 7.5. Allow the user to select ranges of
interest on the parallel coordinate axes and highlight the selected lines in a more visually salient
color. Allow the user to rearrange the layout of the axes to reconfigure the visualization. Compare
the parallel coordinates visualization to the scatterplot visualization in Exercise 2. What are the
strengths and limitations of each technique?

Exercise 4: Develop a tool that reads in a table of data and combines the histogram, scatterplot,
and parallel coordinate plot developed in the previous exercises. Link interactions in the different
views so that selections in one view are propagated to the other views appropriately. How does the
linking of interactions across multiple views improve the analysis process? Provide specific examples.

Exercise 5: Choose one of the tools developed in the previous exercises and add and automated
data mining algorithm to supplement the display. For example, you may add a clustering algorithm
to color similar lines in a parallel coordinate plot or calculate correlation coefficients to automati-
cally arrange the parallel coordinates plot axes. Discuss the advantages and disadvantages of this
visual analytics tool as compared to the original implementation.
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7.13 SOURCES FOR MORE INFORMATION
7.13.1 JOURNALS

• IEEE Transactions on Visualization and Computer Graphics
• IEEE Computer Graphics and Applications
• ACM Transactions on Computer Graphics
• ACM Transactions on Computer Human Interaction
• Elsevier’s Computers & Graphics

7.13.2 CONFERENCES

• IEEE Scientific Visualization Conference
• IEEE Information Visualization Conference
• IEEE Visual Analytics Science and Technology Conference
• SPIE Conference on Visualization and Data Analysis (VDA)
• ACM SIGCHI
• ACM SIGGRAPH
• The Eurographics Conference on Visualization
• IEEE Pacific Visualization Symposium
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