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Abstract—In this paper, we introduce a Web-based visual
analytics framework for democratizing advanced visualization
and analysis capabilities pertinent to large-scale earth system
simulations. We address significant limitations of present climate
data analysis tools such as tightly coupled dependencies, ineffi-
cient data movements, complex user interfaces, and static visu-
alizations. Our Web-based visual analytics framework removes
critical barriers to the widespread accessibility and adoption of
advanced scientific techniques. Using distributed connections to
back-end diagnostics, we minimize data movements and leverage
HPC platforms. We also mitigate system dependency issues by
employing a RESTful interface. Our framework embraces the
visual analytics paradigm via new visual navigation techniques for
hierarchical parameter spaces, multi-scale representations, and
interactive spatio-temporal data mining methods that retain de-
tails. Although generalizable to other science domains, the current
work focuses on improving exploratory analysis of large-scale
Community Land Model (CLM) and Community Atmosphere
Model (CAM) simulations.

I. INTRODUCTION

Rapid advances in extreme scale computing feed the de-
velopment of increasingly complex and higher fidelity climate
simulations. These simulations promise a more comprehensive
and potentially revolutionary understanding of complex cli-
mate processes. However, the full potential of such advances
are delayed since exploratory analysis tools disproportionately
lag behind the volume and complexity of the data. Conse-
quently, the data are drastically reduced to high-level statis-
tical summaries or subsets, which precludes new hypothesis
generation. Scientists need a new class of scalable visual ana-
lytics tools that harness emerging high performance computing
(HPC) architectures. These tools must deliver new interaction
schemes and information visualization techniques that address
both multi-scale and hyper-variate analysis requirements. Fur-
thermore, barriers to the accessibility of advanced visual analy-
sis capabilities must be torn down using loosely coupled, Web-
enabled frameworks that streamline deployment and increase
adoption rates among domain experts.

In response to these challenges, we introduce a new Web-
based visual analytics framework (see Figure 1) that allows
scientists to interactively explore large-scale climate simulation
data using interactive information visualization techniques.
Although HPC architectures and algorithms are a critical
component of our overall system, the current work emphasizes

our efforts to harness dynamic human interaction and democ-
ratize advanced visual analysis for climate science. Leveraging
statistical analytics that execute on a high performance Web
server, the framework uses a thin-client approach exposing
both diagnostic computation results and raw data access via
a flexible interface. On the front-end, the scientists use an
intuitive Web-based interface to interactively explore simu-
lation data via dynamic visual queries and representations.
Furthermore, we designed the framework in close collaboration
with climate scientists (who are also co-authors on this paper)
to ensure an efficacious response to both their present and
future data analysis needs.

The framework addresses two pressing Big Data chal-
lenges recently highlighted by the White House1: (1) scalable
algorithms for working with imperfect data and (2) effec-
tive human-computer interaction tools for facilitating visual
reasoning. Specifically, the current work offers four main
contributions to the scientific computing domain:

1) New Web-based interactive information visualization
techniques for large-scale simulation data analysis,

2) A tree-based navigation method for visually exploring
hierarchical diagnostic parameter spaces,

3) A level-of-detail (LOD) visual analysis system that
allows interactive drill-down, and

4) A loosely-coupled visual analytics architecture that
connects Web-based visualizations to fast diagnostic
algorithms executing on HPC architectures.

The remainder of this paper is organized as follows: Fol-
lowing an overview of related work in Section II, Section III in-
troduces the climate simulation data and related challenges. In
Section IV, we describe the scientific workflow and diagnostics
stack utilized by the visual analytics system. In Section V, we
introduce the Web-based visual analytics techniques. Then, in
Section VI, we discuss advantages and challenges for thin- and
thick-client solutions with respect to visual scientific analysis,
followed by the concluding Section VII.

1White House “Big Data Initiative” press release: http://www.whitehouse.
gov/sites/default/files/microsites/ostp/big data press release final 2.pdf
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Fig. 1. The Web-based visual analytics framework introduces several key contributions to the scientific computing domain: (a) Web-based visualization techniques
for large-scale data analysis, (b) a unique tree-based visual analysis method for climate diagnostics, and (c) a multi-scale correlation mining technique.

II. RELATED WORK

A. Climate Visualization and Analysis

In the literature, the majority of efforts that seek to improve
climate data analysis can be subsumed under the standalone,
thick-client philosophy. For example, Potter et al. [16] intro-
duced the Ensemble-Vis framework making use of coordinated
multiple views (CMV)—a popular methodology involving
linked brushings spread across multiple visualizations, which
has demonstrated more creative and efficient analysis [17].
Using this CMV interface, Ensemble-Vis is capable of pro-
ducing geographic plots, trend charts, and climate ensemble
visualizations. In other similar work, the focus is on addressing
the challenges of multivariate visualization and analysis of
climate data [10], [12], [18].

UV-CDAT is a modern system that integrates several
existing scientific data visualization tools into a thick-client
framework [29]. However, UV-CDAT focuses on traditional
scientific visualization techniques such as 3-dimensional vol-
umes and geographic plots. The Exploratory Data analysis EN-
vironment (EDEN) is a related thick-client system, which uses
a parallel coordinates based canvas with coordinated statistical
visualizations for general purpose exploratory analysis [20]
and more specific climate simulation studies [21], [22].

The above mentioned works belong to a small class of in-
teractive visualization systems that deliver analysis capabilities
via a thick-client, standalone application approach. Such tech-
niques are valuable for expanding our exploratory data analysis
capabilities, but they also tend to suffer, at varying degrees,
from usability, deployment, and adoption issues. Furthermore,
these techniques are often difficult to configure and use on the
scientists’ workstations—a significant barrier to widespread
adoption at the point where such capabilities are most needed.
Consequently, these solutions never fully replace the familiar
tools of the scientists that were originally developed to deal
with data scales from past decades. In light of these issues, the
objective of the current work is to bring the advanced visual
analytics tools to the more accessible Web environment.

B. Web-based Climate Analysis

Just as hardware advances drive extreme scale comput-
ing to exascale, the recent surge in Web-based application

technologies feeds a growing trend toward Internet applica-
tion deployment, which may eventually phase out standalone,
desktop applications. Using loosely-coupled and flexible com-
ponents, such as d3.js [4], jQuery, Bootstrap, and Django,
end-user deployment and accessibility issues are minimized
since applications are directly executed in a Web browser via
a URL. Furthermore, intense processing and large-scale data
storage can be hosted on high performance back-end servers
and remotely accessed by the clients interfaces.

Web-based applications permeate many domains, includ-
ing climate data analysis. A literature review of Web-based
climate analysis systems reveals several geoprocessing frame-
works [31], [32], but the typical focus is on the Application
Programming Interfaces (APIs) and standards for connecting
back-end processing modules. Typically, they do not address
the development of interactive visualization and analysis tech-
niques for large scientific data sets, particularly those used
in climate studies. Of the works that do consider Web-based
visualizations, the majority of works primarily rely on the
Google Earth application or similar geographic visualization
systems [2], [3], [9], [23], [27].

The distinguishing feature of our framework is the em-
phasis on providing new information visualization techniques,
including novel interaction techniques, that permit dynamic
visual queries of large-scale climate simulation data sets via
distributed connections to a high performance diagnostics
server. We focus on harnessing distributed diagnostic algo-
rithms for extreme scale science using interactive information
visualization techniques to achieve greater efficacy in scientific
knowledge discovery. We address the need for multi-scale
and hyper-variate exploratory data analysis by using unique
visualization techniques and interfaces to efficiently navigate
the information space. Our work coalesces these concepts into
a loosely-coupled framework that is deployed via the Internet,
thereby increasing the accessibility of advanced visualization
tools and, ultimately, equipping climate scientists with more
advanced visualization and analysis capabilities.

C. Exploratory Data Analysis

Visual analytics is a modern take on the concept of
exploratory data analysis (EDA), which was introduced by
Tukey [25]. EDA is a philosophy for data analysis that
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emphasizes the involvement of both visual and statistical
understanding in the analysis process. Tukey likened EDA to
detective work—a creative process for finding and revealing
clues. Since the introduction of EDA, subsequent advances
in interactive computer graphics spawned the formation of
the visual analytics field, which is generally defined as the
“science of analytical reasoning facilitated by interactive visual
interfaces” [24]. Visual analytics is a multi-disciplinary ap-
proach for designing visual analysis techniques that efficiently
combine the strengths of machines with those of humans [11].
In the current work, we embrace the visual analytics paradigm,
by integrating both human and high performance computation
through intuitive interaction schemes and human-centered in-
terfaces. Although human-centered computing is not typically
the focus of high performance computing, we believe the
intelligent combination of these two components, each having
unique and powerful features, is the key for realizing the full
potential of extreme scale science.

Visual analytics and EDA techniques are the key ingredi-
ents for dealing with extreme scale data because they foster
serendipitous discoveries and answer questions unasked [6].
Scientific progress heavily depends on formulating and in-
vestigating new hypotheses. As Cleveland states, the analysis,
however, “should not narrowly focus on just those hypotheses
that led to collection” which will “inhibit finding surprises
in the data” [6]. This philosophy is important for climate
simulation analysis and motivates our quest to create effective
systems that help scientists generate and test new hypotheses.

Presently, scientific analysis tools cannot deal with the
increasing scale and complexity of extreme scale data without
drastic data reductions that precede the analysis process. By
reducing these rich data sets to a few statistics such as means,
standard deviations, variance components, and correlation co-
efficients, inferences that follow are based on a very limited
collection of values, which is too restricting since information
in the data can be lost. As Cleveland states: “We cannot expect
a small number of numerical values to consistently convey the
wealth of information that exists in the data” [6].

In the current work, our objective is to create visual
analytics tools that blend statistical summaries with detailed
views via multi-scale, interactive visualizations. Our approach
respects the benefits of summary statistics, especially for
extreme scale data exploration, while also integrating drill-
down capabilities to access the raw data behind statistical
summaries.

III. EARTH SYSTEM SIMULATION DATA

Although generalizable to any large-scale scientific data
set, the current work focuses on improving the analysis of
data sets produced by the Community Land Model version 4
(CLM4) [13] and the Community Atmosphere Model version 4
(CAM4) [14]. CLM4 and CAM4 are the land and atmosphere
components of the Community Climate System Model version
4 (CCSM4) [8]. In particular, we focus on 1/2 degree global
CLM4 data sets and 1/4 degree global CAM4 data sets to
address our active climate studies. These data sets contain
over 440 output variables (CLM4 plus CAM4) which can be
either 2-dimensional or 3-dimensional (atmospheric variables
are commonly 3-dimensional). Simulation data sets consist

of monthly output files, which are about 415 megabytes for
CLM4 (1/2 degree) and about 4.3 gigabytes for CAM4 (1/4
degree). For a 100-year simulation, 1,200 files are produced
from each component, totaling about 5.6 terabytes. Typically,
scientists produce multiple simulations, including a control
run and several instrumented runs with parameter variations
designed to support inter-comparisons of the simulation results.
Assuming a modest study comprised of a single control and
two additional instrumented simulations, the amount of data
to be processed triples and the inter-comparison combinations
for variables, spatial regions, and temporal ranges grow expo-
nentially, far exceeding the capacity of existing tools.

Climate scientists also generate ensembles of simulations
for conducting sensitivity analysis and uncertainty quantifica-
tion. Such analysis may produce thousands of different simu-
lations. Due to computational costs of running the simulations,
these ensembles are usually restricted to single geographic
locations (or some modest selection of locations) over some
time range. However, with exascale computing architectures
on the horizon, global ensemble analysis featuring hundreds
or thousands of simulations will soon be possible, producing
an overwhelming increase in the volume of data to be pro-
cessed. Therefore, now is the time to develop new systems
that minimize data movements via distributed frameworks and
seamlessly scale to the volume and complexities of the data
as well as the perceptual capacity of humans.

IV. TECHNICAL APPROACH

Our Web-based visual analytics infrastructure functions
as an embedded, post-processing component in larger archi-
tectures that encompass all aspects of an HPC environment.
Figure 2 depicts a notional view of our end-to-end frame-
work featuring the Community Earth System Model (CESM)
workflow within the Oak Ridge Leadership Computing Fa-
cility (OLCF) and facilities such as the ORNL Compute and
Data Environment for Science (CADES)2. A pre-determined
workflow is considered (labeled as A in Figure 2) where
a climate model is configured, verified, and executed using
standard procedures on a supercomputer (e.g., OLCF’s Titan).
The raw output of the model may then be migrated to a
high performance cluster for preliminary large-scale scientific
discovery via data analysis and visualization of the output.
The model and analysis results are subsequently archived into
either tertiary storage devices such as the High Performance
Storage System (HPSS), or large data management enterprise
systems such as the Earth System Grid Federation (ESGF).
These data objects are combined with external sources such
as observational data to provide the underlying data of our
analysis framework. The data are queried and manipulated
using our high performance climate diagnostics server (B in
Figure 2), which includes analysis toolkits and an externally-
facing Web service API (C in Figure 2). The front-end clients
(D in Figure 2), which may entail desktop or mobile Web
browsers, enterprise clients, or simple command line utilities,
send requests to the Web application using these APIs. These
requests trigger interactions with a series of scripts that facil-
itate retrieval of raw data, generate diagnostics plots, extract
time series, and calculate various statistical summaries. These
summaries include measures like variances and climatologies

2http://computing.ornl.gov/cades
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Fig. 2. This figure provides a notional view of the Web-based visual analytics framework in the context of the larger processes and architectures encompassing
the full spectrum Community Earth System Modeling (CESM) within a HPC environment. Loose connections between the interactive visualizations and the
back-end diagnostics toolkit ease deployment issues and can increase adoption among scientists for post-processing analysis. Thin clients are flexible and
lightweight running on both desktop and mobile Web browsers.

(averages). The responses are transmitted using a lightweight
interchange format and consumed by the clients to produce the
visualizations detailed in Section V.

A. Scientific Workflow

The process described above is driven by the requirements
of climate scientists who utilize HPC facilities to perform
computationally-intensive experiments and simulations. Large-
scale climate modelers, like many other computational scien-
tists, use a diversity of workflow processes depending on the
sub-area of research, stage of development, and diversity of
collaborators. With this diversity comes a range of expectations
and processes, but we focus on three levels of workflow that
enable climate model development and analysis.

The first stage is a developmental workflow, which spans
the process altering code and features that affect the solution
and performance of the model. In this stage, lightweight
workflow tools are employed, which enable fast but less
comprehensive analyses for verification purposes. The second
stage of workflow is exploratory, and involves the most diverse
set of tasks and processes because it covers the extension of
the model development results to more rigorous and compre-
hensive testing. The focus at this stage of research is on the
flexibility to explore results across one or multiple components
by looking at a standard set of broad, simple measures coupled
to the ability to ‘dive’ into more details where interesting
results are discovered. Usually a shorter run is completed,
bursts of analysis are performed, and, if issues arise, a return
to the developmental stage occurs.

The third and most mature workflow occurs when model
development is complete and a climate modeler has designed
an experiment using a released climate model. The workflow
steps are codified and involve: (1) creation of the desired model
configuration, (2) a short run and evaluation to verify the set
up and check for optimized performance, (3) run execution
with some informal checking of the output, and (4) substantial

post-processing that varies based on the experiment. Recent
efforts by climate and computational scientists are focused
on addressing these key steps. The first three tasks involve
intricate system integration schemes and the introduction of
configuration and model scripting engines and are beyond the
scope of this particular work. Instead, we focus on the fourth
step of post-processing—a key component in verification,
analysis, and dissemination of model output.

B. Climate Diagnostics Server

Once the model output is archived (e.g., ESGF, HPSS,
shared file system, or local disk), it can be accessed by our
climate simulation diagnostics toolkit (see Figure 2). This
toolkit consists of scripts and library routines that create
diagnostic output plots, extract time series information, and
perform statistical calculations. One major advantage of having
the scripts on the back-end is that the data will typically reside
on the same network or machine as the processing scripts.
Thus, only the relevant data is transmitted to the client.

In the current implementation, diagnostic output plots
are based on existing land and atmospheric routines, with
extensibility to other diagnostic packages (see section V-A).
Typical diagnostic operations involve climatology calculations
and producing horizontal contour plots for seasonal means,
line plots showing the global average of a variable over a
time range of the data set, vertical contour plots for zonal
means, and horizontal vector plots for seasonal means. Pre-
computed plots for the most commonly used variables and
seasons are generated by a batch process as part of the model
workflow. The framework also allows ad hoc plots to be
generated by the user with the diagnostics tree viewer (see
section V-A) for arbitrary variables and time ranges—a feature
not currently available in existing static analysis tools. Once a
plot is generated, it is cached for fast future retrievals.

The back-end scripts also enable easy access to the sta-
tistical summary capabilities of external resources outside of
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the diagnostics framework. These capabilities are used for
calculating average maps over spatio-temporal slices of the
data for the geospatial view (see Section V-B) and calculating
statistics for the heatmaps (see Section V-C). The calculations
are fast (even in serial) taking approximately 15 seconds to
calculate one climatology for 15 years of CLM data (about 100
GB) on a laptop. To address larger scales, we are increasing the
parallel capabilities of the back-end processes. Many of these
operations are trivially parallelizable but require careful imple-
mentations to avoid significant I/O contention. Techniques such
as those utilized in ParCAT [19] will be integrated into CDAT
to increase performance. Additionally, the workflow process
will cache climatologies for the most common operations.
Thus, the system can retrieve data very quickly since it resides
in the same space as the server with little overhead beyond the
Web query and transmission of results to the client.

C. Web-Based Application Framework

The back-end climate diagnostic tools form the fundamen-
tal computational and data manipulation components utilized
by our infrastructure middleware. The middleware is a critical
component for feeding data to our extreme scale visual an-
alytics clients. As such, careful design is required to enable
an efficient and scalable experience for scientists. To this
end, we use Django, a Python-based scalable Web application
framework that provides a rich suite of capabilities and fosters
rapid-prototyping through its conformity to the model-view-
controller (MVC) software design pattern. Django enjoys a
vibrant community, widespread adoption in both industry and
academia, and it can easily be deployed in most environments.

The Web service APIs in our framework are built in the
style of REST (Representational State Transfer) [7]. REST
is a high-level architectural term describing an approach for
providing guidance about making the best use of the Web’s
existing technologies, rather than reinventing new strategies of
Web-based communication. The exchange format is the well
structured and compact JavaScript Object Notation (JSON)
format, which may be quickly written and read into the
payloads on both the client and the server side. The RESTful
methodology has been proven to be a successful foundation
in HPC environments, as demonstrated in the NEWT frame-
work [5]. While a discussion of the benefits of REST (e.g.,
the promotion of scalability through Web caches) is beyond
the scope of this paper [15], it is important to note that it
works naturally with our visualizations (see Section V) and
it seamlessly integrates with the climate diagnostics back-end
layer.

V. WEB-BASED VISUAL ANALYTICS

Interactive visualization is the indispensable interface be-
tween the human visual system and computational resources
acting on the data [28]. Therefore, our objective is to improve
this interface, using representation and interaction, to enable
rapid knowledge discovery in the overall human cognitive
system. In the remainder of this section, we will detail three
information visualization techniques utilizing our framework:
a tree-based visualization of the diagnostic parameters space,
an interactive spatio-temporal visualization, and a multi-scale
correlation heatmap. Although we limit the discussion to

three visualizations, the framework supports and enables other
views, which are currently under development.

A. Tree-based Navigation of Diagnostic Parameter Space

Through experience, climate scientists have identified sev-
eral diagnostic techniques for evaluating key patterns in
simulation data sets using statistical calculations and static
plots. For CLM4 and CAM4, these diagnostic techniques are
captured in the National Center for Atmospheric Research
(NCAR) Land Model Diagnostics Package (lnd diag3) and At-
mosphere Model Diagnostics Package (atm diag4). Like many
traditional climate analysis packages, the diagnostics packages
are executed via non-interactive, command line scripts. The
scripts accept configuration parameters, process the data sets,
and generate a hierarchy of hundreds of static plot images.
The hierarchy is defined by organizing the plot parameters
according to geographic regions, temporal ranges, and plot
types for each variable of interest. To facilitate viewing the
images file, a set of HTML files (see Figure 3c) are gener-
ated with hyperlinks for navigating the hierarchical parameter
space. Although the hyperlinks offer a universal mechanism
to explore the images in a Web browser, it is a laborious and
time-consuming tree traversal exercise. Given the sheer number
of resulting plots, it is nearly impossible to consider all the
information. With simulations rapidly increasing in volume
and complexity, this approach will soon fail altogether. Fur-
thermore, the current approach supports neither comparative
analysis of multiple plots nor context preservation of the plot
parameter hierarchy.

To overcome these issues, we used the d3.js [4] tree layout
API to develop a tree-based visualization (see Figure 3a). The
scientist can interactively explore the complex parameter space
of the diagnostic plots via a single page Web-based interface.
The visualization allows the scientist to consider the entire
hierarchy while maintaining a visual context of the location
in the overall parameter space. By clicking the tree nodes,
the scientist can expand sub-trees and drill-down to the leaf
nodes, which represent the diagnostic plots. When a node is
clicked, the application sends a request to the Web server. The
server processes the request by either dynamically generating
the plot using the back-end diagnostics engine (section IV-B)
or retrieving pre-generated images from the server cache.

As shown in Figure 3a, the plot image is transmitted to
the visualization application for display in the right-hand plot
panel. This plot panel is scrollable showing a descending his-
tory of plots viewed from top to bottom. Each plot thumbnail
includes two buttons that enable removal from the panel and
full plot viewing. In the full plot view (see Figure 3b), the
image can be annotated with comments, which are persisted
on the server to allow interactive note taking and sharing.
Directly above the tree visualization, key interface components
allow the scientist to save the current tree navigation state to
support reproducibility. The interface components also enable
accessing both the saved tree states and plot images. The
ability to save and retrieve tree and plot configurations form the
basis for future expansion of the framework to support social

3NCAR Land Diagnostics website: http://www.cgd.ucar.edu/tss/clm/
diagnostics/webDir/lnd\ diag4.1.htm

4NCAR Atmosphere Diagnostics website: http://http://www.cgd.ucar.edu/
amp/amwg/diagnostics/
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(a) Tree-based Visualization of Diagnostic Plot Parameter Space (b) Diagnostic Plot View and Annotation Panel

(c) NCAR CLM Diagnostics Plot Interface (HTML)

Fig. 3. We introduce a unique tree-based visualization (a) that allows interactive exploration of the complex parameter space of climate diagnostics via a
Web-based interface. Scientists can expand the parameter hierarchy and click on leaf nodes to dynamically generate the appropriate views. A scrollable plot view
panel keeps a history of plots (a) which can be expanded to see full views (b). Plots can be annotated for collaborative analysis and saved for future retrieval.
This visualization improves the navigation experience of previous diagnostics tools (c) that rely on manual HTML-based hyperlink traversals.

computation and collaboration. Currently, more than half of
the existing NCAR diagnostics have been ported to the new
framework back-end, which is written in Python and utilizes
the CDAT library (part of UV-CDAT [29]) for data processing.

B. Exploratory Spatio-temporal Visualizations

Spatio-temporal pattern mining is one of the most critical
aspects of climate simulation analysis. As advances in high
performance computing feed the creation of higher fidelity
simulations, the volume and complexity of the resulting data
far exceed the limits of conventional climate data analysis
tools. To accommodate these deficiencies, full-scale simula-
tion data sets are drastically reduced to statistical summaries
such as means, standard deviations, and variance measures.
Although these measures are informative for exploring broad
trends, they are prone to mask outliers and significant asso-
ciations in the raw data—the key ingredients to unexpected
and potentially revolutionary scientific discoveries. To realize
the full potential of extreme scale simulation data, climate
scientists need visual analytics techniques that allow efficient
access to both statistical summaries and raw information.

To address these challenges, we developed an interactive
spatio-temporal visualization (see Figure 4a) allowing the
scientist to perform dynamic visual queries at full resolution
to see both summary statistical information and raw data. In
the left-hand panel, the scientist selects the simulation data set
and variable of interest. The Web application submits a request
for the variable data to the diagnostics server. The server reads
the data, calculates the statistics, and returns the results to the
Web application if the data has not already been generated and
cached. Then, the data are rendered in both the geographic and
time series visualizations.

In the geographic map (see Figure 4a), data corresponding

to the currently selected month of a particular year are rendered
using a customizable color-filled level plot. As the mouse is
moved in the map, the value corresponding to the geographic
location under the mouse cursor is shown at the bottom right
corner of the map. Furthermore, when the scientist clicks in the
geographic view, the application sends a request to the diagnos-
tics server for the time series data at the selected geographical
location of the mouse via the RESTful API. The back-end
server reads the data, computes summary statistics, and returns
the results to the Web visualization. This computation is very
quick as it is extracting a limited subset from the raw data.
The data are then rendered in the time series visualization that
is shown below the geographic view. Similarly, moving the
mouse in the time series visualization causes the associated
value to be shown with the location indicated with a vertical
bar. Clicking in the time series visualization will cause the
application to request the geographic data for the selected time
from the diagnostics server. The server will transmit the data to
the Web application and it will be rendered to the geographic
view. In addition to the time series line, the mean value is also
shown as a horizontal reference line.

These details-on-demand queries are supplemented with
dynamic brushing capabilities in either the geographic or
time series views to produce mean values for the highlighted
range. For example, if the scientist drags a bounding box in
the geographic view (see Figure 4b), the time series view
will render the average temporal trend line for the region
of interest. Likewise, if the scientist drags a box in the time
series view (see Figure 4c), the geographic visualization will
show the mean map for the time range of interest. Therefore,
the visualization allows both summarized and detailed views
for longer range trend and detailed exploration, respectively.
Together, these capabilities provide an effective interface for
exploring even large data sets.
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(a) Interactive Spatio-temporal Visualization (b) Geographic Brushing and Average Time Series

(c) Temporal Brushing and Average Geographic Map

Fig. 4. The capability to interactively explore spatio-temporal patterns in climate simulation data is a fundamental requirement. Our spatio-temporal visualization
allows the scientist to explore large simulations interactively via a geographic and time series view. The scientist can click locations or times of interest to query
particular values (in Figure (a) a time of interest is indicated by a vertical bar). Brushings are also available in both views. In Figure (b), a region in South
America (indicated by the dark shaded box) is brushed. When the brushing is performed, the data for all cells in selected region are averaged into a single time
series and rendered in the temporal view below. As shown in Figure (c), a temporal range can also be brushed in the time series view to visualize the average
values in the geographic view above.

To see an animation of the geographic view, the scientist
can click the “Play” button in the left panel. A vertical line
in the time series indicates the current time. As the line
increments forward, the geographic view is updated with data
for the current time step. This feature gives scientists the
capability to see spatio-temporal trends and augments the
interactive visual query features.

C. Multi-scale Correlation Heatmap

Another fundamental challenge of large scale scientific data
analysis is enabling creative exploration of the data at multiple
scales as seamlessly as possible, while maintaining contextual
awareness. In particular, climate scientists need a framework
that supports a high level overview, initially, and intuitive drill-
down interactions to effectively zoom into increasingly detailed
views of the data. This approach is analogous to tile-based
map servers, such as Google Earth, which have demonstrated
a superior user experience for exploring geographic informa-
tion. Multi-scale interfaces, however, are not available for the
statistical views that are critical to climate data analysis.

To address these challenges, we leverage a Web-based
visual analytics technique that we originally developed to
explore health care indicators [30]. The resulting visualization
(see Figures 5a-c) provides an interactive, multi-scale tech-
nique enabling correlation mining of selected variables. The
technique allows full spectrum exploration of varying scales
from an initial overview of all the pair-wise correlations, to
investigation of particular subsets, to individual analysis of bi-
variate scatterplots. Although the current implementation fo-
cuses on correlation mining, the approach also accommodates
other statistical measures.

As shown in Figure 5a, the scientist begins the correlation
mining task by selecting a set of variables, a time range, and a
geographic area of interest. Initially, the visualization shows a
correlation matrix for the selected data. The correlation matrix
is a symmetric n x m matrix where each i, j element is equal to
the value of the correlation coefficient, r, between the i and j
variables. Specifically, the Pearson product-moment correlation
coefficient is used to measure the correlation for a series of
n measurements of X and Y written as xi and yi where i =
1, 2, . . . , n [26]. The value of r is given by:

r =
n
∑

xiyi − (
∑

xi)(
∑

yi)√
[n

∑
xi

2 − (
∑

xi)2][n
∑

yi2 − (
∑

yi)2]
(1)

At each intersection, r is encoded with a color-filled square,
where the color is chosen from the color scale shown in
Figure 5d. This color scale produces shades of blue and red
for negative and positive correlations, respectively. To encode
the correlation strength, a saturation scale maps the strongest
correlations to more saturated and, therefore, more visually
salient colors. Using this color scale, white squares indicate no
correlation. The correlation of a variable with itself is always
a perfect positive correlation, hence the diagonal of the matrix
is represented as a series of highly saturated red squares.

From this initial correlation matrix view, the scientist can
zoom into the visualization (see Figure 5b) using the mouse
scroll (or similar zooming gestures) to focus on a particular set
of variables. As the analyst zooms into the display, the number
of visible variables decreases. When the number of variables
across the row or column dimension of the visible display
is reduced to 6 or fewer variables, the display transitions to
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Strong Positive Correlation (r = 1.0)

No Correlation (r = 0.0)

Strong Negative Correlation (r = -1.0)

(d) Correlation Color / Saturation Scale

(a) Initial Correlation Heatmap Overview (b) Zooming into a Region of Interest (c) Zoomed to Detailed Scatterplot Matrix View

Fig. 5. The multi-scale correlation heatmap uses a unique level-of-detail algorithm to systematically stream in additional detail as the scientists zooms into
the display. Initially, the visualization shows a correlation matrix for the variables of interest. The matrix is represented as a heatmap (a) where red and blue
squares encode the positive and negative correlation coefficient, respectively. A saturation scale (d) is used to encode the strength of the correlations so that
stronger correlations are more saturated and visually salient in the display. “Zooming” into the visualization (b) causes additional detail to display. At a defined
threshold, the correlation squares transition into scatterplots (c) to reveal the most detailed information.

a more detailed scatterplot matrix as shown in Figure 5c. In
this view, the frame of each scatterplot retains the original
background color as a halo to maintain the context of the
correlation strength, and the individual points that contribute
to the correlation measure are rendered as points.

When the scientist hovers over individual points, the values
of the points are shown using dynamic tooltips (see Figure 6).
For each of the other scatterplots in the visible area, the points
corresponding to the geographic location of the hover point are
also highlighted for a coordinated multiple-view (CMV). This
coordination visually links selections across views for compar-
ative analysis. Furthermore, subtle grid lines are shown in the
scatterplots to provide a reference for detecting relationships
across the matrix.

The multi-scale correlation heatmap addresses the per-
ceptual and technical scale issues associated with analyzing
correlations within a large data set. The level-of-detail (LOD)
algorithm only streams the raw data points when the number
of scatterplots in consideration are below a certain threshold in
order to manage the memory limitations of the Web browser’s
document object model (DOM). In addition to considering
the DOM scalability issues, the LOD algorithm helps achieve
perceptual scalability by avoiding an overwhelming visual
representation consisting with hundreds of details views. The
visualization allows the scientist to consider broad correlation
patterns intuitively and, as desired, descend into detailed
views seamlessly from a unified visual interface. Such a LOD
approach is an exemplar model of the human-centered, multi-
scale approach that is necessary to support interactive analysis
of large scale scientific data in a human-centered framework.

VI. DISCUSSION

Web-based deployment of advanced visual analytics tech-
niques could revolutionize scientific knowledge discovery,
particularly in climate sciences. However, the distributed na-
ture of Web-based applications requires careful planning and
a strategic investment into back-end development. Having
developed both thick- and thin-client solutions for climate
visual analytics, we have gained a valuable perspective on the

challenges and advantages of Web-based applications. In the
remainder of this section, we will expand upon this practical
knowledge and address the importance of close collaborations
with domain experts in the development cycle.

A. Challenges of Large Scale Data Analysis on the Web

Despite the promise of Web-based application develop-
ment, it is difficult to develop Web-based applications, par-
ticularly systems that deal with large scale data sets. One
challenge is efficiently dealing with limited memory in the
DOM. From our experiments, we find that interactivity is
drastically reduced when thousands of graphical items are held
in the DOM. In order to ensure responsive interactions, we
must restrict the amount of data sent to the browser with a
LOD scheme as implemented in our correlation heatmap (see
Section V-C).

Similar to geographic map systems, we allow zooming into
the data, streaming increasingly detailed views as the extent
of relevant data is reduced. The LOD scheme is extended
beyond usage in geospatial views to permit multi-scale views
for temporal, variable, and other derived dimensions of the
data. A key challenge for multi-scale views is maintaining an
awareness of the current position in the LOD continuum. An
easily decoded graphical LOD indicator is required, which is
positioned on the periphery of the display for instant reference.
Furthermore, the system should preserve the context of the
more complete overview of the data. That is, a focus+context
display is needed to supplement the LOD indicator and reveal
the gestalt [1] of the whole data set. In geographical maps
systems, context is commonly shown as a world map with a
box drawn around the region the scientist is currently zoomed
into. In our correlation heatmap, we will show the overall
heatmap, highlighting the variables that are shown in the
zoomed view. Maintaining the context of the detailed view
contributes to human cognition of the relationship of detailed
subsets to the more complete and generalized whole.

On the back-end, parallelized diagnostics allow fast, ad hoc
queries from the scientist’s Web browser when dealing with
extreme scale data sets. Currently, the back-end diagnostics are
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primarily serial, but the operations performed are parallelizable
and work is in progress to extend the algorithms. These queries
must be optimized to return data to the client as fast as possible
to maintain interactivity. This constraint requires a balance
between parallel job start-up times and the actual amount
of computation required. Improved algorithms help, but an
efficient caching mechanism is vital to a good user experience.
In our system, we cache query results and check the cache
storage for queries before we perform expensive computations.
If the query has been performed recently, we simply send
the pre-cached results. We also initially populate the cache
with common calculations (e.g., global average maps, temporal
averages) when a new data set is loaded into the back-end
system as part of the workflow process. This requires more
storage on the back-end, but it pays big dividends in maintain-
ing responsive front-end performance, especially when coupled
with the level-of-detail tools presented.

B. Advantages of a Web-based Application Deployment

The decision to bring visual analytics capabilities to the
Web is a direct response to the challenges of deploying
advanced thick-client visualization and analysis tools for sci-
entific applications. Despite the advanced capabilities of these
systems, relatively few approaches are used in practical anal-
ysis. Some barriers to adoption of these systems include:
complicated compilation and installation procedures, tightly
coupled dependencies, and complex user interfaces.

A Web-based solution dramatically reduces deployment
issues by running directly in the scientist’s Web browser. The
interface can be accessed from both desktop and mobile Web
browsers yielding a high degree of accessibility for extreme
scale analysis on workstations, laptops, tablets, and even
smart phones. A Web-based system also enables revolutionary
collaboration capabilities, which we are actively incorporating
into our system. Installation procedures are reduced to having
a compatible Web browser installed on the host system.
Furthermore, new releases are deployed on the Web server
and users have the most recent version each time they visit
the site. Finally, a number of recent Web user interface frame-
works, such as Bootstrap and jQueryUI, incorporate proven
and efficient practices for improved accessibility and usability
making a Web-based application more intuitive.

C. Importance of Multi-disciplinary Collaborations

The success of our approach can be largely attributed to
the inclusion of domain experts in the design and development
iterations. This intentional strategy mutually benefits all parties
involved and helps ensure that we respond to the actual
needs of domain experts. Our frequent interactions (weekly)
guarantee the practicality of our solution and enhance broader
adoption in the climate science community. Just as we learn
more about the intricacies of the climate science domain, we
are able to introduce new information visualization, interaction,
and analytics algorithms to the scientists. As a result, the
scientist have time to learn and provide feedback on new
approaches by virtue of being part of the development team.

VII. CONCLUSION

In the current work, we introduce a new Web-based visual
analytics framework that bridges the gap between advanced

Fig. 6. Our framework UI uses HTML5 standards that make it accessible
on both desktop and mobile Web browsers. In this figure, an analysis session
using our correlation heatmap visualization is shown demonstrating visual
analysis, backed by leadership class computing architectures, accessed via the
intuitive and convenient tablet platform.

visualization and analysis and real-world, extreme scale cli-
mate data analysis. The framework includes human-centered
information visualization techniques and novel interaction
schemes in a manner that integrates the strengths of human
computation with the tremendous computational power of
leadership class architectures. Although it is initially difficult
to develop the back-end for such distributed frameworks, the
result, if designed intelligently, is revolutionary accessibility
for domain scientists. Furthermore, deploying a lightweight
UI built on HTML5 standards enables extreme scale analysis,
powered by the world’s fastest computing platforms, on a
variety of platforms such as workstations, laptops, tablets, and
smart phones (see Figure 6).

We are currently extending this framework to include
additional information visualization techniques such as parallel
coordinates and interactive statistical representations. Future
work includes parallelizing the back-end computations and
building a robust collaboration system for scientific analy-
sis. This Web-based visual analytics framework democratizes
advanced scientific visualization and analysis and it is an
exemplar of the new class of techniques needed to realize the
full potential of extreme scale computing.
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