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Abstract—Molecular Dynamics (MD) simulation have been
emerging as an excellent candidate for understanding complex
atomic and molecular scale mechanism of bio-molecules that
control essential bio-physical phenomenon in a living organism.
But this MD technique produces large-size and long-timescale
data that are inherently high-dimensional and occupies many
terabytes of data. Processing this immense amount of data in
a meaningful way is becoming increasingly difficult. Therefore,
specific dimensionality reduction algorithm using deep learning
technique has been employed here to embed the high-dimensional
data in a lower-dimension latent space that still preserves the
inherent molecular characteristics i.e. retains biologically mean-
ingful information. Subsequently, the results of the embedding
models are visualized for model evaluation and analysis of the
extracted underlying features. However, most of the existing
visualizations for embeddings have limitations in evaluating the
embedding models and understanding the complex simulation
data. We propose an interactive visual analytics system for
embeddings of MD simulations to not only evaluate and explain
an embedding model but also analyze various characteristics of
the simulations. Our system enables exploration and discovery
of meaningful and semantic embedding results and supports the
understanding and evaluation of results by the quantitatively
described features of the MD simulations (even without specific
labels).

Index Terms—visual analytics, machine learning, HCI, molec-
ular dynamics

I. INTRODUCTION

Molecular dynamics (MD) simulations provide meaningful
insights into the atomistic details of complex biological pro-
cesses such as protein folding. Under the hood MD essentially
solve Newton’s laws of motions for large groups of atoms
(e.g., a protein or other complex biological structure) and
generate vast quantities of visually rich information that need
to be analyzed quantitatively for further detailed interpretation.
Therefore, data generated from MD simulations tend to be
high-dimensional and with millions of data points [1]–[6]. For
example, a typical protein folding trajectory can possess tens
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of thousands atoms (including solvent) and generate millions
of conformations.

From a computational perspective, one of the major chal-
lenges is the efficient extraction of experimentally relevant
features from these high-dimensional datasets. These features
often tend to be low-dimensional. Given the inherent high
dimensionality of MD simulation datasets, it is often neces-
sary to use dimensionality reduction methods to relate these
datasets with experimentally relevant features. Dimensionality
reduction techniques result in latent embeddings of the MD
data such that they can be compared with experimental data;
however, this is still challenging since interaction with such
high-dimensional datasets can pose inherent cognitive and
visual challenges to elucidate biologically meaningful features.

One of the popular approaches to evaluate the embedding
models and analyze the underlying features is to visualize
them. The interactive visualization of these embeddings al-
lows one to not only verify dimensional reduction methods
(i.e., how models accurately capture certain similarity across
groups of simulation frames), but also potentially interpret bio-
molecular mechanisms that lead to specific observations across
MD simulations [7]–[9]. However, most existing visualizations
for embeddings have some limitations in evaluating the embed-
ding models and understanding the complex MD simulations.
Such visualizations are non-flexible and non-interactive, and
provide limited functions. Embedding projector [10] demon-
strated an interactive visualization system for embeddings and
analysis of high-dimensional data to mitigate the limitations.
Although the system is designed for general purposes, the
system still has some limitations related to user interactions
and analysis for data with no labels.

In this paper, we propose a new visual analytics system
for embeddings of MD simulations to not only evaluate and
explain the embedding model but also observe various charac-
teristics of protein conformational changes. Our system allows
scientists to explore and discover meaningful geometry of
conformational state clusters. Existing visual representations
for embeddings usually attach metadata (labels) to the data
points in the latent space to understand the models. Although
our MD simulation data do not have specific labels, it can be
quantified by specific measurements, such as the total number
of contacts, the fraction of native contacts, and root mean
squared deviations (RMSD) to the native state. Our system



supports the understanding and evaluation of the clustering
results by coordinating the quantitatively described features of
the MD simulations. Also, we provide the improved ability of
user interaction for effective visual analysis of embeddings.
Finally, the system allows a in-depth analysis of the MD
simulations by rendering and visualizing the molecules.

II. RELATED WORK

Several novel approaches for visualizing outputs from ma-
chine learning and deep learning have been proposed [11].
However, we discuss previous work related specifically to the
visualization of latent dimensions (i.e., embeddings) from di-
mensionality reduction techniques [10], [12]–[15]. Embedding
Projector [10] provides an interactive 2/3D projection for em-
beddings of high-dimensional data using PCA and t-SNE [16].
ACTIVIS [12] also provides a projection view of instances;
however, it is more focused on visualizing how neurons
(within deep learning algorithms) are activated by instances or
instance subsets to understand how a model makes decisions.
EmbeddingVis [13] provides a visual analytics system for
exploratory and comparative analysis of graph embeddings
models. Some studies [14], [15] have focused on visualizations
for exploring and analyzing word embeddings. While these
previous studies can be generally used for visualization, they
do not necessarily address scientific domain specific (i.e., in
this case, molecular dynamics simulations) datasets and how
biophysically relevant insights can be drawn by just visualizing
these datasets.

In this paper, we enable new user interactions with visu-
alizations for embeddings in 3D space and demonstrate how
our system handles embeddings of long time-scale molecular
simulation datasets with quantitative descriptions rather than
qualitative labels. Finally, to the best of our knowledge, this is
the first interactive visualization for deep embeddings of MD
simulations.

III. EMBEDDING OF MOLECULAR DYNAMICS
SIMULATIONS

A. Background

Proteins perform their physiological functions by struc-
tural transitions between various native conformational states
through folding/unfolding or association/dissociation with lig-
ands or other bio-molecules. With the extensive application
of GPU, MD simulation can now sample trajectories (i.e.,
structural protein transitions) up to experimentally relevant
millisecond time scales, capturing the dynamics in atomistic
detail. To elucidate the mechanism and pathway of protein
structural transitions, therefore, it is important to observe,
identify, and characterize local conformational states from the
MD trajectories. However, the long-timescale MD simulations
consequently generate a massive amount of high-dimensional
data in size of terabytes. Current analysis methods are often
challenged in handling these kinds of data. Therefore, recent
studies have been seeking to analyze MD simulations using
high-performance computing to reduce the data dimensionality
and capture the most important and effective dimensions from

the simulation trajectories for such biological processes [1],
[6], [17]. Thus, many dimensionality reduction techniques
have been developed and employed to embed the 3 × N
(N is the number of atoms in the molecule) dimensional
conformational states in a low-dimensional latent space (2D or
3D) [18], [19]. The result embeddings are commonly projected
into a 2D or 3D plot. But it often takes elaborating efforts to
extract an individual point or a subset of points for further
analysis. In this paper, we introduce a new visual analytics
system for the embeddings, which enables users to interact
with the MD conformers in the latent space.

B. Dimensionality Reduction

The dimensionality reduction process can be conducted
using an autoencoder, a self-supervised deep learning model,
which can be trained to reconstruct a dateset after encod-
ing it into a reduced latent space [20]. Various autoen-
coders have been developed and successfully constructed low-
dimensional underlying representations of the 3D protein
conformations [7]–[9]. In this study, an application of a
convolutional variational autoencoder (CVAE) was adapted to
automatically reduce the high dimensional conformations from
MD simulations into scattering points in 3D latent space where
those points are also grouped according to shared structural
and energetic characteristics [7], [8], [21]–[24]. Instead of
a fully-connected autoencoder learns an arbitrary function,
we use a variational autoencoder (VAE) that encodes the
inputs as a normal probability distribution function that in
latent space. As a result, the data points from VAE are more
evenly distributed in the latent space, which leads to a better
visualization outcome. Furthermore, convolutional layers are
added to the VAE architecture to utilize their sliding filter maps
that can take account neighboring information into each point
in the contact maps. Because conformational information in
protein appears as local patterns in contact maps, convolutional
layers are better suited to recognize these patterns comparing
to feedforward networks. With the trained model, the confor-
mational information from MD simulations are embedded into
a latent space spanned by the three dimensions (z1 – z3). Each
embedding corresponds to a conformational state, and thus
the folding reaction coordinates of protein folding/unfolding
process [25].

C. Metadata

To gain better visualization of the latent data, the points
in the latent space are painted with different colors according
to features of the corresponding conformations in real space.
While MD trajectories contain only the atom positions at the
different time frame and are lack of inherent labels to define
such features, each data point can be labeled with the results
from quantitative analysis, which can distinguish the individual
protein conformation. The commonly used methods are the
total number of contacts, the fraction of native contacts, and
RMSD to the native state. Native contacts are based on a cut-
off distance of 8 Åbetween Cα atoms. To calculate the fraction
of native contacts we use a definition from the work of Savol



Fig. 1. Analysis of MD simulation embeddings of a visualization system with
the control panel (1), the 3D Embedding View (2), the Individual Dimensional
Component View (3), the Metadata View (4), and the Molecular View (5).

and Chennubhotla [26]. The RMSD of each conformation are
calculated against the fully folded native state and at least 75%
of conformations remain within an RMSD cut-off of 1.1 Åof
the native state.

IV. SYSTEM DESIGN

The overall goal of analyzing embeddings of MD simu-
lations is to understand biochemical processes such as con-
formational changes and then get insights into such bio-
molecular mechanisms. To achieve the goal, multiple re-
quirements should be achieved. We identified three design
requirements:

• R1. Evaluation: Scientists need to evaluate, explore,
and compare the clusters of conformational states by the
embedding models.

• R2. Interpretation: Since the conformational states have
no specific labels, we need to provide an easy way to
distinguish and interpret the states.

• R3. Examination: Analysts need to view the actual con-
formational states (molecules) of interest for verification
and further examination.

With respect to these data specifics and the requirements,
our visualization system provides suitable visual representa-
tions and highly interactive features in different views for
analyzing embedding of MD simulations. In Figure 1, our
visualization system consists of multiple components: the
control panel (1), the 3D Embedding View (2), the Individual
Dimensional Component View (3), the Metadata View (4),
and the Molecular View (5). All views are connected with
brushing and linking. These multiple coordinated views enable
scientists to explore different aspects of the data in different
views through different representations so that they find causal
relationships easier and uncover unforeseen connections. The
following sections describe each view and user interactions
with the views.

A. 3D Embedding View

After dimensionality reduction, we are given a set of data
points in the 3D latent space. Our 3D embedding view displays
the 3D data points as circle dots as shown in Figure 2. The
position of each dot represents its z1, z2, and z3 coordinate.

Fig. 2. 3D Embedding View: 3D scatter plot for embeddings of MD
simulation and interactive cluster selection by shape templates.

The color of each dot encodes the value of the selected
metadata (RMSD selected). Users are able to choose one of
the metadata sets. Data points with high values are colored
by dark green and low values are dark brown. Users easily
explore the data points embedded into the 3D space to see
which of them are close together and what are their values. We
can see that some data points are closely placed to each other
in an elongated shape which is a cluster of conformational
states, where we can clearly see that each cluster has its
own direction. As mentioned earlier, the value of metadata
represents a specific characteristic of the conformational state.
Therefore, users can evaluate their embedding model; how the
data points are separated into distinct clusters; how the colors
of points in a cluster are similar to each other (R1, R2).

Scientists often want to select a specific cluster to investigate
it in detail. Also, they want to compare two different clusters
to identify different characteristics (i.e., folded/unfolded). Our
system allows them to select clusters using two shape tem-
plates that have two different types available: cylinder and
cone, where the shapes serve as filters. They select one of the
types. If they select Cone, two 3D cone shapes with different
colors (Green and Orange) appear in the 3D embedding view
(See Figure 2). If they select None, the shapes disappear. Once
the selected 3D shapes appear, they can rotate each shape
in any direction. They select a shape by clicking on one of
the shapes and rotate it by mouse moving like a joystick,
where the origin of the shape is anchored to the center of
the view. Clicking on the view outside of the shapes enables
rotating the camera position (viewpoint) of the 3D view. In
addition to rotating the shapes, they are able to change their
length and radius. The selected data points that are inside the
shape are colored pink (See Figure 2). This selection task is
very important for interpreting and understanding the evolving
process of conformational states since each cluster represents
a specific conformational state. This interactive visualization
enables the continuous representation of the selected clusters
of interest and rapid, incremental feedback for the users which



Fig. 3. Individual Dimensional Component View: The three components of
each selected data point are displayed on the three scatter plots separately:
z1 (left), z2 (center), z3 (right). Each plot consists of two plots: focus (top)
and context (bottom) plots. The colors of dots in the focus plot represent the
corresponding 3D shapes.

allows them to complete the selection task in less time because
they can see and evaluate the results of an action before
finishing the action [27].

The rationale behind such a design is that the 3D scatter
plot is the better choice than a 2D scatter plot. We also
conduct experiments with the embedding model to reduce the
high dimensional data to a 2D latent space. The results of
experiment show that the clusters are too severe overlap to
visually distinguish. Also, it is hard for users to interactively
select a single cluster. So, even though the 3D plot has many
limitations, in this study it provides better performance than
2D. Also, as users can easily rotate the viewpoint of the 3D
scene, the occlusion issue is mitigated.

B. Individual Dimensional Component View

Interpreting each dimensional components is very impor-
tant for understanding the embedding models. For example,
the model developers may want to know which components
are strongly correlated with a specific cluster and which
components have high variation. Once scientists select two
sets (clusters) of the data points in the 3D embedding view,
the three components (z1, z2, z3) of the each selected data
point are separately displayed in the three different plots,
visualizing the distributions of each dimensional component
(R1). The three plots are lined up horizontally in order z1,
z2, and z3 (Figure 3). The x-axes are the frame number (the
temporal sequence of conformational states). As we can see,
however, a large number of points causes a clutter issue. To
resolve the issue, we employ a focus+context interface through
brushing [28]–[30]. Each plot consists of two sub plots: focus
and context plots. The context plot (bottom) represent the
overall distribution of the entire selected data points. The focus
plot (top) shows only a subset, where the subset is selected
by brushing over a specific region of the context plot. Also,
the plots are linked together, so if users brush a specific area
on one of the context plots, the same areas of other plots are
brushed. In Figure 3, the plots show the individual dimensional
components of the selected clusters shown in Figure 2. The
green and orange dots of the plots indicate the selected clusters
by the green and the orange cone shapes respectively. The
cluster (green dots) has a higher variation on the z1, while
another one (orange dots) has a higher variation on the z3
(see Figure 3).

Fig. 4. Metadata View: Each plot shows the different metadata of the
selected data points (top). The plots and the 3D embedding view (bottom)
are coordinated.

C. Metadata View

Although the conformational state data is highly complex,
each state can be quantitatively described by corresponding
metadata described earlier. Our metadata view provides three
plots for each metadata item to provide a straightforward
way to interpret and classify the states (R2). In Figure 4, we
show two plots for RMSD (top-left) and the fraction of native
contacts (top-right) out of three plots as an example. The plots
are also designed in the same manner as other plots. Also,
scientists are able to select points of interest through brushing
on the focus plot. The selected points are colored pink in all the
plots. The 3D embedding view is also coordinated through the
synchronous highlighting of corresponding elements, where
the elements are colored pink as well (See Figure 4 (bottom)).
These fully linked views enable users to explore different
aspects of the data in different views and to find causal
relationships easier.

D. Molecular View

Our molecular view allows scientists to view and interact
with actual 3D MD simulations of the selected data points
(R3). Since the size of the selection is usually very huge
(1K – 3K), we sample the data points based on the point’s
magnitude in the direction of each cluster. Each cluster has a
certain direction (vector from the origin to the center of the
shape’s bottom). For each selected point, we calculate its scalar
projection of the point’s vector onto the cluster’s vector. Then,
we choose two sets of the points: eight points with the highest
values and eight points with lowest values to view balanced
samples.

Snapshots of a specific viewpoint of the selected MD
simulations are displayed in the small square views initially
in Figure 5. Figure 5 shows some sample views of all views
(5) in Figure 1. Once they click on one of the views, it is
converted into a 3D viewer for MD simulations (see first and
third ones in Figure 5). The views enable users to interact with
the actual 3D structure of the corresponding MD simulation.
Then, they can rotate and zoom the 3D structure using the
viewer. Also, hovering the mouse cursor on it shows detailed
information of the MD simulation. In Figure 5, the first and
second simulations in the green boxes show two samples



Fig. 5. Molecular View: Each small view represents an actual MD simulation.
Clicking on one of them, it is converted a 3D viewer for MD simulations,
which enables interactive analysis of its 3D structure.

respectively as examples out of the simulations selected by
the green cone in the 3D view. The third and last ones are
selected by the orange cone. The first and third simulations
represent the data points with high scalar projection value; the
second and last ones do the data points with low value. The
simulations in the green boxes correspond to the green dots
with low RMSD and high fraction values in the two metadata
plots in Figure 4. Through the 3D structures we can verify
that the protein chains are folded (helix structure) (R3). The
ones in the orange boxes correspond to the orange dots with
high RMSD and low fraction values. In Figure 5, we can see
that the protein structures are unfolded.

The rationale of this visualization design is that the domain
experts need to see the actual 3D structure from the different
viewpoints of the selected data points for verification and
further examination. Without our system, for this work, they
have to use another tool to load and view the 3D structure for
each data point. This task is burdensome and ineffective.

V. CASE STUDY

This study is still on an initial stage. We work with three
domain experts on a pilot case study. Here, we emphasize how
our visualization system enables exploration and identification
of meaningful embedding results and how the system can help
the experts evaluate their dimensionality reduction model.

The dataset consists of 28 separate MD trajectories of
the Fs-peptide, a widely studied model system for protein
folding. To demonstrate the system, MD simulation results
of Fs-peptide are prepared through dimensionality reduction
and computation of metadata. For protein folding, resulting
in an aggregate sampling of 14 µs, the dataset is consisting
of 280,000 conformations (data points). We processed each
conformations using the MDAnalysis library [31], [32] to
extract contact maps between every pair of Cα atoms; we
consider an atom to be in contact to another atom if it is
separated by less than an 8 Å. Contact map provides a reduced
representation of protein structure from its full 3D atomic
coordinates. Note that contact map representation is invariant
to rotation and translation (which is typically an artifact of
MD simulations). The contact maps are successively fed into
our dimensionality reduction architecture.

We apply the convolutional variational autoencoder to re-
duce the high dimensional conformations from MD simula-
tions into 3D latent space. In Figure 2, we can see there are
many clusters and particularly the data points of each cluster

Fig. 6. Cluster Selection: A set of points are selected by a 3D cone shape to
investigate the embedding model and the cluster in detail.

Fig. 7. Cluster Analysis: Each plot shows three different metadata values of
the selected cluster in Figure 6.

have similar RMSD values (the higher the RMSD value, the
more unfolded the state. The lower the RMSD, the more folded
the state). We can observe that different states are separated
into distinct clusters. Also, it is notable that the folded states
(brown) are similarly clustered together.

We evaluate the model, how it classifies the protein confor-
mation based on the corresponding metadata, inherent charac-
teristics of conformations. We find out two metadata values
tend to have an inverse correlation through the two plots:
RMSD (top-left) and the fraction of native contacts (top-right)
in Figure 4. We also select another cluster using the green
cone shape (see Figure 6). In Figure 7, the three metadata
plots show each corresponding metadata. The cluster has very
similar RMSD values (left) while there is a larger variation on
the fraction of native contacts (center) and the total number
of contacts (right). Similar results are shown even when we
select other clusters. Therefore, we can assess the current
model provides better results in terms of the RMSD than other
metadata.

VI. CONCLUSION

We proposed a new visual analytics system that analyzes
the embedding of MD simulations by a dimensionality re-
duction framework. The system also helps scientists interpret
the complex bio-molecular mechanisms using interactive and
coordinated visualizations. Selecting the clusters in the 3D
Embedding view using a mouse is still tricky. As future work,
we will improve the user interaction to improve the operation.
Also, we will allow the system to compare multiple embedded
models to find an optimized model.
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