
 Procedia Computer Science 18 (2013) 2367 – 2375

1877-0509 © 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational Science
doi: 10.1016/j.procs.2013.05.408

2013 International Conference on Computational Science

ParCAT: Parallel Climate Analysis Toolkit

Brian Smitha*, Daniel M. Ricciutoa, Peter E. Thorntona, Galen Shipmana, Chad A.
Steeda, Dean Williamsb, Michael Wehnerc

aOak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge TN 37830
bLawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550

cLawrence Berkeley National Laboratory, 1 Cyclotron Rd. Berkeley, CA 94720

Abstract

Climate science is employing increasingly complex models and simulations to analyze the past and predict the future of
th in complexity is creating a widening gap between the data being produced and the ability to

analyze the datasets. Parallel computing tools are necessary to analyze, compare, and interpret the simulation data. The
Parallel Climate Analysis Toolkit (ParCAT) provides basic tools to efficiently use parallel computing techniques to make
analysis of these datasets manageable. The toolkit provides the ability to compute spatio-temporal means, differences
between runs or differences between averages of runs, and histograms of the values in a data set. ParCAT is implemented as
a command-line utility written in C. This allows for easy integration in other tools and allows for use in scripts. This also
makes it possible to run ParCAT on many platforms from laptops to supercomputers. ParCAT outputs NetCDF files so it
is compatible with existing utilities such as Panoply and UV-CDAT. This paper describes ParCAT and presents results
from some example runs on the Titan system at ORNL.

© 2013 The Authors. Published by Elsevier B.V.
Selection and/or peer-review under responsibility of the organizers of the 2013 International Conference on Computational
Science

Keywords: Parallel Climate Analysis ParCAT

1. Introduction

Climate science is employing increasingly complex models and simulations to analyze the past and predict the
future of climate [1,2]. This growth in data is creating a widening gap between the volumes of data
being produced and the tools necessary to analyze the large, high dimensional datasets. Single model runs
generate tens and hundreds of gigabytes of data for relatively small time scales. Extended time model runs have
the potential to generate terabytes of data. Multiple model ensemble runs for comparisons between models are

* Corresponding author. Email address: smithbe@ornl.gov

Available online at www.sciencedirect.com

© 2013 The Authors. Published by Elsevier B.V.
Selection and peer review under responsibility of the organizers of the 2013 International Conference on Computational
Science

Open access under CC BY-NC-ND license.

Open access under CC BY-NC-ND license.

http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

2368 Brian Smith et al. / Procedia Computer Science 18 (2013) 2367 – 2375

also common. These ensemble runs can generate terabytes of data as well. Because of the explosion of data,
parallel computing tools are becoming a necessity to analyse, compare, interpret, and verify the simulation
data. Typical preliminary analysis operations are things like spatio-temporal averages, differencing two model
runs, and generating frequency histograms.

Spatio- xample, it is expected that the
warmest temperatures will be found in the summer months in the northern hemisphere. If an average of the
ground temperature for a multi-year model run shows the warmest temperatures in the northern hemisphere in
the summer months, the scientist can be reasonably certain that at least the temperature was calculated correctly
by the model. Similarly, frequency histograms can be also used to check a given model run. It is expected that
the highest temperatures will be clustered around the tropics so the distribution of higher temperatures should
be skewed towards the tropics as well. Likewise, if scientist wants to see the effect of an increase in CO2 in the
atmosphere, differencing a control run and the experimental run and looking at temperature might be a good
place to start.

Fortunately, these operations are
calculating a spatio-temporal average map is parallelizable in time, space, and per variable. Some variables
even add a fourth parallelizable dimension height or depth. For many analysis operations, all of those
dimensions are independent. A given set of nodes could operate on a single variable and single time step
calculating averages in small regions, such as continents or evenly divided ranges of latitude and longitude.
Alternatively, a given set of nodes could operate on multiple variables where each process calculates the
difference of two model runs for a given time stamp over the entire range of latitude and longitude. Taken to an
extreme, a parallel analysis toolkit could parallelize calculations over latitudes, longitudes, elevations,
variables, and times all over multiple input files. However, because these calculations require a significant
amount of I/O (relative to compute), such extremes are unlikely to yield excellent results.

Because many clusters, supercomputers, and even desktop computers have multiple cores per processor, it
makes more sense to limit the parallelism to two dimensions one spread over a node and one spread over the
cores. For example, it might make sense to have each node read files in parallel and each core on the node
process variables in parallel out of the files read by the node.

This paper describes a new utility called ParCAT that was developed from a collaborative effort of climate
scientists and computer scientists to facilitate parallel data analysis. ParCAT provides the ability to perform
spatio-temporal averages, differencing multiple datasets, and generating histograms with algorithms that take

and I/O systems. Results from some sample runs on a high-e are provided.

2. Parallel Climate Analysis Toolkit (ParCAT)

The Parallel Climate Analysis Toolkit (ParCAT) provides basic tools to efficiently use parallel computing
techniques to make analysis of large datasets manageable. Because of the collaborative effort, the tools are
highly focused on the needs of climate scientists. ParCAT targets model output generated by the Community
Climate System Model (CCSM) [1], and has specifically been focused on land (CLM) and atmospheric (CAM)
model runs. However, the framework is meant to be fairly flexible and could conceivably provide parallel
analysis tools for any large NetCDF dataset.

Currently, ParCAT provides the ability to compute spatio-temporal means, differences between runs or
differences between averages of runs, and histograms of the values in a data set. The ParCAT framework also

2369 Brian Smith et al. / Procedia Computer Science 18 (2013) 2367 – 2375

tries to make it fairly easy to add additional functions that can be parallelized in space, time, or per variable.

ParCAT is designed as a backend tool for processing large, multidimensional datasets. The toolkit does not
focus on performing the final visualizations or interpretation of the data, but rather it can reduce the large
datasets to smaller, more manageable summaries for visualization, analysis, interpretation or even presentation
in other tools.
extremely fine spatial resolution. The toolkit is implemented as a command-line utility written in C and
utilizing parallel NetCDF (pNetCDF) [3] and MPI [4]. This allows for easy integration in other tools (e.g. UV-
CDAT [5] or EDEN [6]) and allows for scripting (e.g. recreating much of the NCAR model diagnostics [7]).
Because ParCAT is a command-line utility written in C with fairly common libraries, it is also possible to run it

ParCAT processes NetCDF files as input and provides NetCDF files as output. Output files from ParCAT are
therefore compatible with existing analysis tools, such as Panoply or UV-CDAT, and libraries that process
NetCDF files in C, Python, Perl, etc.

2.1. ParCAT Operation

The minimal invocation requires a path to the files to process and the desired operations to perform. A more
typical invocation specifies a subset of time (years/months), a list of variables of interest, an output file name,
and a hint for the type of dataset (CLM or CAM are currently supported). For functions that take multiple input
file sets (e.g. difference) a second path is required. A second set of time specifiers is also allowed. This allows
things like a comparison between summer and winter months in one model run or between two separate
models.

Currently, ParCAT supports three different types of model output:

 One timestamp per file with multiple variables per file. The CLM sample dataset used in section 3 is
structured this way. The filenames have a regular pattern similar to rundescription-{year}-{month}.

 One variable per file with multiple timestamps per file. The CAM sample dataset is structured this
way and was postprocessed from output similar to the CLM sample dataset by a widespread
community practice. The filenames have a regular pattern such as {variable name}rundescription-
{start year}-{end year}.

 An arbitrary listing of files and variables

However, CCSM allows the user to specify how output is generated independent of the model being run. As
discussed earlier, even though the operations ParCAT supports are trivially parallelizable performance is
unlikely to improve with more than one or two levels of parallelism given the I/O-bound nature of data
processing. ParCAT supports up to two parallel dimensions when processing CAM and CLM-like datasets and
one parallel dimension for an arbitrary listing of files and variables.

For CLM datasets, ParCAT distributes one or more files to each node in parallel. Every core on the node

processes one or more variables in the file(s) the node has opened. This is shown in Figure 1. For the sample
runs in section 3 there are twenty years of data with monthly snapshots (120 total files) and 349 variables. If
there are four cores per node and thirty nodes, each node will open four different files. On each node, each core
will process about eighty-eight of the 349 variables contained within each file. Once the data is read in on each
core, the cores combine their data to get a local sum per variable on the node. This would be the sum of the
data in the four files the node processed. After this is done, all nodes perform an allreduce operation. Every

2370 Brian Smith et al. / Procedia Computer Science 18 (2013) 2367 – 2375

node now has the total sum of all data points for can have each of its cores
write out a section of the output file. As the number of files increases, the number of nodes ParCAT can utilize
also increases. As the number of variables increases, ParCAT can parallelize work among more cores.

For CAM datasets, ParCAT distributes one or more files (each of which contains one variable) to each node.

Each core handles a subset of the timestamps within the file. This is less parallelizable than CLM datasets
because the number of variables (and, thus files) in CAM runs tends to be smaller. However, the larger
individual files can provide some advantages as discussed in section 3. This setup is shown in Figure 2. For the
sample dataset utilized in section 3, there were twenty-eight variables and 624 timesteps. If there are four
nodes, each node processes seven files (which is therefore seven variables). If there are sixteen cores, each core
would processes thirty nine time steps.

2371 Brian Smith et al. / Procedia Computer Science 18 (2013) 2367 – 2375

For arbitrary file lists, ParCAT distributes one file to each node. There is no further parallelization.

2.2. ParCAT in other applications.

Because ParCAT is a command-line utility, other applications can make use of the ParCAT functionality.
Currently, ParCAT support is enabled in the EDEN application and ParCAT has been used to dramatically
speed up portions of the NCAR Land Diagnostics Package.

The Exploratory Data analysis Environment (EDEN) is a robust visual analytics framework that fosters

interactive visual queries for tackling big data challenges in climate science. EDEN features a multi-faceted
filter panel as well as a highly interactive visual data analysis canvas that integrates scatterplots, a correlation
matrix, and a geographic scatter plot. Once a user has selected one or more datasets and specific years, months,
and variables of interest, a real-time spatio-temporal average map is generated using ParCAT. This enables the
user to determine quickly if the specified parameters seem viable for further study. An example screen shot is
shown in Figure 3. This map was generated by EDEN running ParCAT after the user selected a time series and
variable of interest. Additional functionality in EDEN might eventually be offloaded to ParCAT as well.

2372 Brian Smith et al. / Procedia Computer Science 18 (2013) 2367 – 2375

Brian Smith/ Procedia Computer Science 00 (2013) 000 000

The NCAR Land Diagnostics Package can be used to compare two model simulations or compare a model
simulation to observational data. The diagnostics package produces postscript plots of long-term trends and
seasonal means, in regional, global, and globally averaged formats from CLM files. The postscript files are
converted to .gif files and packaged in a web page for easy reference. As a proof of concept, several pages of
the diagnostics were recreated with ParCAT output, a Python script utilizing pupynere (a NetCDF file reader
for Python) and gnuplot. Results can be obtained very quickly after ParCAT has summarized model output.

3. Example Results

Two typical datasets were analyzed with ParCAT, one CLM and one CAM. The CLM dataset was a fifteen-
year simulation with monthly snapshots (180 time steps total). There were 349 variables and the spatial
resolution was ½ degree. The total size of the dataset was approximately 71GB. The CAM dataset was the
result of a fifty-two year simulation with monthly snapshots (624 time steps total). Raw CAM output consisting
of files containing all output variables for one snapshot time step was postprocessed into the CMIP5[8] file
standards of one variable per file containing all 624 time snapshots. There were twenty-eight variables and the
spatial resolution was one degree. The total size of the dataset was approximately 18GB. Both the CLM and
CAM datasets are structured on a regular latitude-longitude horizontal grid. The ParCAT results were obtained
with the Titan[9] supercomputer at Oak Ridge National Labs, a large Cray XK7 installation. None of the GPUs
were available at the time of the runs, but ParCAT is not setup to take advantage of them anyway. Titan is
connected to the Spider Lustre-based filesystem[10] which is a high performance parallel file system. Several
other users were running on Titan at the same time the results were obtained, so each ParCAT run was done

all
variables (349 for the CLM dataset, twenty eight for the CAM dataset). Additionally, in an effort to minimize
possible caching effects, sequential runs changed the number of nodes with the number of cores fixed, so each
node (except node 0) should get different files to process. Lustre has a number of tunable parameters based on
file size and access patterns. However, none of the parameters were adjusted for these runs. The Spider system
is tuned for files larger than the individual NetCDF data files, so some further performance improvement might
be achievable.

At this time, ParCAT uses MPI for the intranode communication (as opposed to OpenMP or shared memory
operations). This is because p-NetCDF shares file access via an MPI communicator. This also makes it easy to
perform the collective operations (e.g. MPI_Allreduce) required for gathering node-wide results. However, the
MPI standard provides no general, portable way to determine or guarantee how MPI processes are arranged on
the nodes and cores of a given machine. The Cray runtime environment allows the user to specify how
processes are arranged on the nodes but ParCAT has more generalized routines to try to determine node layout.

BrBrBrBBrBrBrBBrBrBBBBBrBrBBrBBBBrBrBrBrBrBrBrBrBBrBrBrBrBBrBrBrBrBrBrBBBrBrBrBrBrBBBBrBrBrrrBBBrBrBrBrBrBrBrBrBrBBBrBrBBrBrBBBrBrBBBrBBBrBBBBBBB iaiaiaiaiaiaiaiaiaiaiaiaaiaiaiaiaaiiiiiaiaiaaiiiaiaiaiaiaiaiai n nnnnnnnn SSmSSSmSmSmSSSSmitititiitith/h/hh/h/hh/hhh PPPPProrororocecececedidididddiddd aa a CoCoCoCCCooCoooCoCoooooooooooooooooooooooooooooooommmpmmmpmpmpmpmmpmmmmpmppmpmmpmpmpmpmmmmmmmmmmmppmmmmmmmmmmpmpmpmmmmpmpmpmmmmpmpmpmmmmmmmmmm uuttututututtutututututuututuuuuttuttututututtutuututututututuuuttututuuuutututututtutttttuutututuutututututuuuuutttuututtuu eerrrrrr rrrrrrrrrrrrrr rrrrrrrrrrrrr SSSSSSSSSSSSSSSSSSSSSScScSSSSSSSSSSSSSSSSS ieieiieeeieieeeeeeeeeeeeeeencnncncncncnccccncncncnnnncnccncncncncccncncncnccnncnnnnnncccnncncncccncncnncnncncncncncncnnncnnnnn eeeeeeeeeeeeeeeeeeeeeeeee eeeeeee e 00 ((((((((((((((((((((((((((((2020000000202020200002000000000000000000000202002020220201111111111111111113)3)3)3)3)3)3)3)3)3)3)3)3)3)3)3)3)3)))3)3)3)3)3)3))3)3))33)333)333)3)3)3)3)3)333)3))))))))))))))) 00 000

Figure 3 ParCAT generated average map from user-selection parameters inside EDEN

2373 Brian Smith et al. / Procedia Computer Science 18 (2013) 2367 – 2375

One trick that can be used on Titan and many clusters is to look at
the same hostname are likely multiple cores on a node. This trick works well on many machines. MPI 3.0 adds
an MPI_Comm_split_type() function call which can split a communicator into subcommunicators that can
create shared memory regions. Once MPI 3.0 is more widespread, this function call should allow for a more
portable method of identifying cores on the same node.

Figure 4 shows results from processing the CLM dataset. The overall trend is as expected. More processing
resources decreases runtime, and utilizing multiple cores to process variables helps as well. The times do not
decrease linearly with increasing processor counts. This suggests that the problem is I/O bound, which is also
somewhat expected given the quantity of data involved and the minimal amount of processing required. The
results suggest that four processes per node is probably the best utilization given this dataset. ParCAT tries to
minimize memory usage to ensure it can run on systems with minimal memory per core. On large memory
nodes like those on Titan, performance might be improved by increasing memory usage. This could enable
larger contiguous reads from the file system before processing data.

Figure 4 Map averaging time for CLM dataset

Figures 5 and 6 show run times for the postprocessed CAM dataset. Because each file contains only one
variable, there is a sequential step to open each file, copy the dimensions to the output file, and setup the
variable in the output file. This step is fairly expensive (approximately 60 seconds for most runs). However, the
actual processing time (calculating the average among the participating cores) is lower per time step than for
the one-file-per-time-step CLM dataset. This is likely because some of the CAM files are much larger than
individual CLM files. Additionally, ParCAT uses a strided, non-blocking read function in pnetCDF. Reading
strided data from these larger files is likely more efficient than reading blocks from individual files. Raw CAM
output, consisting of files with all variables but only one snapshot, would be laid out in a similar manner as thet

2374 Brian Smith et al. / Procedia Computer Science 18 (2013) 2367 – 2375

CLM output considered here, although larger in size due to a larger vertical dimension. It would be interesting
to see individual variables per file CLM output or individual timestamp CAM output and see how the results
compare to these sample datasets. It is also interesting to see that overhead increases when the processing is
first distributed among multiple cores, then tapers off as the number of cores increases. There are likely
optimizations in the pnetCDF implementation to minimize overhead when there is no parallel file access (e.g.
fewer locks might be needed).

Figure 5 - Averaging calculation time for CAM Dataset

Figure 6 - Total time (setup plus averaging calculation) for CAM Dataset

2375 Brian Smith et al. / Procedia Computer Science 18 (2013) 2367 – 2375

4. Conclusions and Future Work

With the rapid increase in complexity of climate models, both from finer resolution simulations and more in-

depth models comes a significant increase in output dataset sizes and complexity. This increase means parallel
tools are now a requirement for meaningful analysis of the data. ParCAT provides basic statistical analysis
tools to help accelerate discoveries and pursue new scientific inquiry in climate science. ParCAT can be
embedded in existing applications or added to an existing workflow. It can run on ultra-high end
supercomputers and basic desktop machines. Additional functionality can be added easily to expand the
capabilities as well.

In the future, a Python wrapper or Python interface would increase the usefulness of ParCAT in many

existing analysis tools. Releasing ParCAT to the open source community is also a goal. Additional
parallelizable functions that are useful to the climate science community should also be explored.

Acknowledgements

This work is sponsored by the Office of Biological and Environmental Research; U.S. Department of
Energy. The work was performed at the Oak Ridge National Laboratory, which is managed by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725. This research used resources of the Oak Ridge Leadership
Computing Facility at Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S.
Department of Energy under Contract No. DE-AC05-00OR22725.

 Thanks to Dave Dillow at Oak Ridge National Laboratory for discussing the Spider file system
implementation and suggesting future optimization options.

References

 [1] P.R. Gent, G. Danabasoglu, L.J. Donner, M. M. Holland, E.C. Hunke, S.R. Jayne, D. M. Lawrence, R. B. Neale, P.J. Rasch,
M.Vertenstein, P.H. Worly, Zong- , Journal of
Climate, vol. 24, no. 19, pp. 4973-4991, 2011

st Science vol. 331, no 6018, pp
700-702, 2011.

 [3] Jianwei Li, Wei-keng Liao, Alok Choudhary, Robert Ross, Rajeev Thakur, William Gropp, Rob Latham, Andrew Siegel, Brad
Gallagher, and Michael Zingale. Parallel netCDF: A Scientific High-Performance I/O Interface. In the Proceedings of Supercomputing
Conference, November, 2003.
 [4] The Message Passing Interface Forum http://mpi-forum.org
 [5] Ultrascale Visualization Climate Data Analysis Tools http://uv-cdat.llnl.gov
 [6] Chad A Steed, Galen Shipman, Peter Thornton, Daniel Ricciuto, David Erickson, and Marcia Branstetter. Practical Application of

Parallel Coordinates in Climate Model Analysis. In Proceedings of the International Conference on Computational Science, pp 877-
886, June 2012

 [7] CCSM Land Model Diagnostics Package http://www.cgd.ucar.edu/tss/clm/diagnostics/index.htm
 [8] Taylor, K.E., R.J. Stouffer, and G.A. Meehl, 2012: The CMIP5 Experiment Design. Bull. Amer. Meteorol. Soc., 93, 485 498, doi:
10.1175/BAMS-D-11-00094.1
 [9] Titan - https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7/
 [10] G. Shipman, D. Dillow, S. Oral, and F. Wang. The Spider Center Wide File System; From Concept to Production Deployment. In
Proceedings of the Cray Users Group Meeting, 2009

