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Rapid increases in high performance computing are feeding the development of larger and more
complex data sets in climate research, which sets the stage for so-called “big data” analysis challenges.
However, conventional climate analysis techniques are inadequate in dealing with the complexities of
today's data. In this paper, we describe and demonstrate a visual analytics system, called the Exploratory
Data analysis ENvironment (EDEN), with specific application to the analysis of complex earth system
simulation data sets. EDEN represents the type of interactive visual analysis tools that are necessary to
transform data into insight, thereby improving critical comprehension of earth system processes. In
addition to providing an overview of EDEN, we describe real-world studies using both point ensembles
and global Community Land Model Version 4 (CLM4) simulations.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Environmental variability and change stimulates our fervency
for understanding past climate patterns and forecasting the future.
Improved comprehension of the earth system process through
simulated data analysis will facilitate well-informed decisions for
critical climate challenges at local and global scales. Due to
unprecedented technological increases in high performance com-
puting (Gent et al.,, 2011; Lawrence et al., 2011; Overpeck et al,,
2011; U.S. Department of Energy, 2012), simulations are evolving
toward higher numerical fidelity and complexity. However, tech-
niques to efficiently analyze the data, particularly interactive visual
techniques, have not kept pace with the growth. Consequently,
climate scientists grapple with so-called “big data” challenges
related to the discovery of significant spatiotemporal associations
among interrelated variables. The scientist has an understanding
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of expected relationships, based on intuition and experience, but
serendipitous discoveries are nearly impossible with conventional
climate analysis tools.

Climate scientists typically rely on basic, static plots (e.g., trend
plots, histograms) that require the use of multiple views since the
techniques are limited to at most three variables; but using
multiple, non-coordinated views is not an ideal approach due to
the limited human memory for information that can be gained
from one glance to the next (Rensink, 2002). In addition, statistical
analysis methods are typically not integrated with these plots,
which further inhibits knowledge discovery. Although many new
multivariate, visual analysis techniques have been introduced in
recent years, few of these approaches have been brought to bear in
climate science. The approaches that do target climate are usually
not adopted into practice because of issues related to non-intuitive
interfaces and/or a failure to respond to the scientists' needs.
Consequently, there is a growing gap between viable visualization
techniques and real-world climate analysis. To bridge this gap,
experts from both areas must work closely together to create
practical systems for today's most pressing problems.

In response to said challenges, we formed a team of researchers
with expertise in climate modeling, visualization, and high per-
formance computing across multiple research institutions under
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the Climate Science for a Sustainable Energy Future (CSSEF)'
project to improve the visual analysis of Community Land Model
version 4 (CLM4) (Lawrence et al., 2011) simulation data. Our new
system, called the Exploratory Data analysis ENvironment (EDEN),
is freely available and facilitates interactive knowledge discovery
and hypothesis generation for more productive exploratory
analysis of climate simulation data. As shown in Fig. 1, EDEN
harnesses the high bandwidth human visual channel with inter-
active parallel coordinates and other coordinated views that guide
the scientist to significant associations in the data. EDEN fulfills
the requirement for an information visualization centric capability
within the context of a broader suite of scientific visualization and
analysis tools called the Ultra-scale Visualization Climate Data
Analysis Tools (UV-CDAT).> Funded by the Department of Energy
(DOE) Office of Science, UV-CDAT provides a number of “big data”
analysis tools for climate data such as volume visualizations and
other 3-dimensional views.

Through several practical evaluations of EDEN in real-world climate
studies, we corroborate the notion that an interactive visual analytics
framework yields a more efficient process for climate analysis as
compared to conventional tools. Furthermore, our research addresses
an important point brought out in the NIH/NSF Visualization Chal-
lenges Report (Johnson et al., 2006) which encourages visualization
researchers to “collaborate closely with domain experts who have
driving tasks in data-rich fields to produce tools and techniques that
solve clear real-world needs” - a challenge that is echoed in the more
recent strategic vision for DOE Climate and Environmental Sciences
Division (CESD) (U.S. Department of Energy, 2012). The tool in the
current work is EDEN, the techniques are interactive information
visualizations and statistical analytics, and the real-world need is the
understanding of earth system simulations and climate change.

2. Related work

In the literature, we find several efforts to improve visual
climate data analysis although we note that it is rare to find such
systems in practice. For example, Potter et al. (2009) introduced
the Ensemble-Vis framework for generating maps, trend charts,
and visualizations of climate ensemble data sets. The effectiveness
of Ensemble-Vis hinges upon coordinated multiple views (CMV) -
a popular approach that has been shown to foster more creative
and efficient analysis (Roberts, 2004). With EDEN, CMV is also a
key catalyst in the interaction model. However, Ensemble-Vis is
apparently devoid of multivariate visualization techniques. Per-
haps the most similar approach to EDEN is the visual multivariate
data exploration system described by Kehrer et al. (2008). Like
EDEN, this system is designed to assist the climate scientist with
hypothesis generation for simulation and observational data sets
using CMV. The system focuses on brushing extensions that
facilitate knowledge discovery using data aggregation and degree
of interest functions with promising results. In a follow-on to this
work, Ladstddter et al. (2010) add a variant of the parallel
coordinates visualization technique to the system, but it is not
the focus of the system. In Sips et al. (2012), a matrix visualization
technique that supports visual pattern detection in multi-scale,
environmental time series data is described. The focus is on a
unique visualization technique, called Pinus, with case studies
related to the analysis of ocean modeling data sets. Although Pinus
does not offer a multivariate visualization technique like parallel
coordinates, it accommodates multi-scale analysis via a novel
graphical representation. EDEN differs from the above-mentioned

1 CSSEF website: http://climate.llnl.gov/cssef/
2 EDEN website: http://cda.ornl.gov/projects/eden/
3 UV-CDAT website: http://uv-cdat.linl.gov

systems in its focus on full spectrum analysis - from high level
overviews to intermediate views to detailed parallel coordinates
plots. EDEN is highly interactive and although aggregation and
statistical summaries are provided, access to the individual data
elements remain accessible on-demand. Furthermore, the focus of
the detailed views is a highly interactive and unique parallel
coordinates implementation that is powerful, yet practical for use
in climate hypothesis formulation. EDEN provides an alternative
visual query interface to the data and is intended to work in
conjunction with, rather than to replace, the standard tools that are
deeply engrained in the climate scientists toolbox, such as IDL and
MatLab. Designed in close collaboration with climate experts, EDEN's
intuitive interface has facilitated its early adoption by scientists in
ongoing climate studies, thereby overcoming a reluctance to employ
unfamiliar techniques that are often difficult to grasp and subject to
significant trust issues.

In practice, climate researchers commonly rely on non-interactive,
static graphics using decades old techniques (e.g. histograms, trend
line charts, and scatter plots); and it is questionable whether these
techniques can cope with the complexity of today's “big data”
challenges. One approach often used in general multivariate analysis
is the scatterplot matrix (SPLOM), which represents multiple adja-
cent scatterplots for all the variable comparisons in a single display
with a matrix configuration (Wong and Bergeron, 1997); but the
SPLOM requires a large amount of screen space and forming multi-
variate associations is still challenging. Wilkinson et al. (2006) used
statistical measures for organizing both the SPLOM and parallel
coordinates plots to guide the viewer through an exploratory analysis
of high-dimensional data sets. Although the organization methods
improve the analysis, the previously mentioned perceptual issues
with SPLOMs remain. Another alternative is to use layered plots,
which condense the information into a single display; but there are
significant issues due to layer occlusion and interference as demon-
strated by Healey et al. (2004).

At the heart of EDEN is a highly interactive variant of parallel
coordinates — a popular multivariate visualization technique that is
well-suited to the analysis of large multivariate data sets. The parallel
coordinates technique was initially popularized by Inselberg (1985)
as an approach for representing hyper-dimensional geometries, and
later demonstrated in multivariate analysis by Wegman (1990).
In general, the technique yields a compact 2-dimensional represen-
tation of even large multidimensional data sets by representing the
N-dimensional data tuple C with coordinates (cy, c3, ..., Cy) by points
on N parallel axes which are joined with a polyline (Inselberg, 2009).
In theory, the number of attributes that can be represented in parallel
coordinates is only limited by the horizontal resolution of the display
device (in Fig. 2 we have a parallel coordinates display that
accommodates the simultaneous display of 88 variable axes). But in
a practical sense, the axes that are immediately adjacent to one
another yield the most obvious information about relationships
between attributes. In order to analyze attributes that are separated
by one or more axes, interactions and graphical indicators are
required. Several innovative extensions that seek to improve inter-
action and cognition with parallel coordinates have been described in
the visualization research literature. For example, Hauser et al. (2002)
described a histogram display, dynamic axis re-ordering, axis inver-
sion, and details-on-demand capabilities for parallel coordinates.
In addition, Siirtola (2000) presented a rich set of dynamic inter-
action techniques. The literature covering parallel coordinates is vast
and covers multiple domains as recently surveyed by Heinrich and
Weiskopf (2013).

EDEN augments the classical parallel coordinates axis by
providing cues that guide and refine the analyst's exploration of
the information space. This approach is akin to the concept of the
scented widget described by Willett et al. (2007). Scented widgets
are graphical user interface components that are augmented with
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Fig. 1. This figure provides an overview of EDEN during analysis of a global CLM4 data set. The CLM4 filter panel (left) facilitates interactive queries into large CLM4 data sets.
The VisFrame (right) offers a highly interactive, visual interface to explore multivariate relationships via linked parallel coordinates, scatterplots, correlation matrix, and
geographic scatterplot visualizations. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)

Fig. 2. An early version of EDEN is used to visually analyze a 1000 simulation CLM4
point ensemble data set with 81 parameters and 7 output variables on ORNL's
EVEREST power wall facility which offers 11,520 x 3072 (35 million) pixels.

an embedded visualization to enable efficient navigation in the
information space of the data items. The concept arises from the
information foraging theory described by Pirolli and Card (1999)
which relates human information gathering to the food foraging
activities of animals. In this model, the concept of information
scent is identified as the “user perception of the value, cost, or
access path of information sources obtained by proximal cues”
(Pirolli and Card, 1999). The scented axis widgets are also assisted
by automated data mining processes that reduce knowledge
discovery timelines. In Seo and Shneiderman (2005), a framework
is used to explore and comprehend multidimensional data using a
powerful rank-by-feature system that guides the user and sup-
ports confirmation of discoveries. Piringer et al. (2008) expanded
this rank-by-feature approach with a specific focus on comparing
subsets in high-dimensional data sets. EDEN is designed to
support a similar rank-by-feature framework with subset selection
capabilities, correlation mining, and interactive visual analysis.
The parallel coordinate plot is ideal for visual analysis of
climate model data because it accommodates the simultaneous

display of a large number of variables in a 2-dimensional repre-
sentation. In EDEN, the parallel coordinates plot is extended with a
number of capabilities that facilitate exploratory data analysis and
guide the scientist to the most significant relationships in the data.
In the following sections, these features are summarized to
provide context for the following case studies, but the reader is
encouraged to explore our prior publications for more detailed
explanations of our multivariate analysis techniques (Steed et al.,
2009a, 2009b, 2012). In the current work, these techniques are
expanded to address large scale data analysis on a variety of
platforms with new evaluations that reveal significant findings.

3. Community land model (CLM) data

Although EDEN is designed for analyzing any multivariate data
set, in the current work we focus our attention on CLM4 data sets.
CLM4 is the land component of the Community Climate System
Model version 4 (CCSM4) (Gent et al., 2011). We have analyzed both %
degree, global simulations and single location ensemble data. Our
global CLM4 simulations contain 360 output variables most of which
are 2-dimensional, with some being 3-dimensional. Simulations
consist of monthly output files that are typically about 415 mega-
bytes each. For a 100 year simulation, we produce 1200 files totaling
about 500 gigabytes. The scientists usually produce multiple simula-
tions, with one control run and several instrumented runs with
parameter variations designed to support intercomparisons. Assum-
ing a single control and two additional instrumented simulations, the
amount of data to be processed triples and the intercomparison
combinations for variables, spatial regions, and temporal ranges grow
rapidly, exceeding the capacity of existing tools.

The scientists also produce simulation ensembles using models
like CLM4 for sensitivity analysis and uncertainty quantification.
Such analysis may produce thousands of different simulations (see
Fig. 2). Due to computational costs of running the simulations,
these ensemble runs are usually restricted to a single location (or a
modest selection of locations) over some time range instead of
global results. However, as computing capabilities continue to
increase, global ensemble analysis will become more common.

Although the point ensembles are often much smaller than the
global simulations, the number of intercomparisons over time,
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space, and variable combinations highlights a critical limitation in
traditional climate analysis tools. That is, file size is not the only
consideration for “big data” analysis. Data complexities such as the
number of different intercomparisons in the simulation ensem-
bles, all of which should be considered, can quickly render
traditional tools inadequate, even with modest file sizes.

4. Challenges in exploratory earth system simulation analysis

Climate scientists use simulations to explore climate change
impacts, attribute these impacts to specific factors, and identify
potential abrupt systems changes. Advances in high performance
computing continue to feed the development of new high- and
variable-resolution simulations. Consequently, the size and complex-
ity of the resulting data sets are exploding (Overpeck et al., 2011).
During analysis, these data sets are inevitably reduced, based on the
scientists' intuition and experience, and analyzed in isolation. The
reductions and isolated investigations hinder holistic intercompar-
isons with the full data set, but these steps are necessary due to the
limitations of conventional climate study tools when confronted with
“big data” challenges. Nevertheless, this reduction is troubling
because detail is inevitably lost, and the portions of the data that
are filtered away may hold unexpected and profound insights about
earth system processes. Consequently, we have an unfortunate
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situation in which climate scientists are forced to reduce the data
to fit inadequate tools.

Scientists are understandably cautious about adding to a growing
backlog of simulation data. And as they diligently work to analyze
today's data sets, which are typically at the gigabyte to terabyte scale,
it is clear that when data sizes reach petabytes and beyond, the
struggle to effectively analyze and understand the data will be
greatly exasperated. To answer pressing scientific questions, we must
turn this data overload into opportunity by creating new approaches
that effectively blend automated analytics with interactive visualiza-
tions in a visual analytics framework. The visual analytics process
differs from ordinary visualization in the active role of the computer
and the human in guiding the scientist and steering analytical
models, respectively (Thomas and Cook, 2005). The active involve-
ment of a human in the analysis task makes visual analytics a
supervised or semi-supervised process involving real-time interac-
tions between the computer and the scientist. Furthermore, dynamic
summarization and interactive visual queries connect the scientist to
the data behind the visualization.

In order to engage the human and machine in data intensive
climate analysis, it is imperative that we harness the power of high-
performance computing platforms (e.g., ORNL's Titan) and paralle-
lism to efficiently compute statistical summaries and execute
data mining algorithms during the analysis session in a manner
that encourages human participation. These characteristics paint a
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Fig. 3. EDEN provides a filter panel specifically designed for intelligent drill-down to detailed investigations with CLM4 data sets. The filter panel provides access to high-
level data set operations, temporal filtering, variable selection, and geographical filtering.
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compelling picture of the methodology necessary to enable knowl-
edge discovery for “big data” analysis in earth system simulations,
and EDEN is a promising realization of this vision.

5. ParCAT: parallel climate analysis tools

As models and simulations increase in numerical fidelity,
parallel computing tools are becoming a necessity for interactive
analysis. Originally developed to support EDEN, ParCAT is an
independent suite of MPI-based routines that efficiently use
parallel computing techniques to facilitate interactive exploratory
data analysis at scale (Smith et al., 2013). ParCAT can be used on
leadership class supercomputers, such as ORNL's Titan, or local
workstations. The toolkit provides the ability to compute spatio-
temporal means and variances, differences between simulation
data sets, and frequency distributions of the data sets.

ParCAT is designed to execute the “heavy lifting” that is
required for large, multidimensional data sets. The toolkit does
not focus on performing the final visualization or presentation of
results. Instead, it helps reduces large data sets to smaller, more
manageable statistical summaries. If ParCAT is installed, EDEN will
use it to calculate summary statistics and high-level comparative
analysis to augment the graphical displays. If ParCAT is not
available, EDEN will default to use a suite of multi-threaded Java
routines to offer similar parallelization, although ParCAT yields
greater efficiency.

6. EDEN: an exploratory visual analysis framework

EDEN is a robust visual analytics framework that fosters
interactive visual queries. EDEN features a multi-faceted filter

1a — Axis2

panel, as well as a highly interactive visual data analysis canvas
that integrates parallel coordinates with coordinated, multiple
views of the data in the form of interactive scatterplots, a
correlation matrix, and a geographic scatterplot. In this section,
we will describe several key capabilities in EDEN.

6.1. Visual filtering supported by information scent

As shown in Fig. 3, EDEN's global CLM4 filter panel provides
user interface components for visually forming multi-faceted
selections using information scent (Willett et al., 2007) to effec-
tively guide the scientist to the most promising relationships. Each
panel facilitates interactive queries in terms of the simulation,
temporal ranges, variables, and geographic region of interest.

Once loaded, the data sets are listed in the data set selection
panel and can be processed in various ways (e.g., differencing,
averaging) using the operations combo box. These calculations are
performed over the full temporal and geospatial ranges of the data
set(s) using ParCAT, if available.

The temporal filter panel facilitates the selection of a span of
years and months of interest for the selected years. The user
selects the years of interest by dragging a range box in the year
timeline. Specific months of interest are selected by using the
month toggle buttons below the year timeline. For instance, in
Fig. 3 the temporal selection encompasses 5 years of the simula-
tion and the months January and July.

The variable selection panel lists the variable names and
associated metadata. With 360 variables in global CLM4 simula-
tions, selecting the variables of interest can be a laborious task
from a user interface perspective. To alleviate this challenge,
metadata are shown in separate, sortable columns revealing the
units, description, and the variable category. In addition, a variable
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filter text field is available to interactively search for keywords
from the variable fields. The scientist selects the left-hand check
box for the variable(s) of interest for subsequent detailed analysis.

In the geographic panel, the scientist defines an area of interest
by dragging a box in the map view or selecting one of the
predefined regions. The map image shows the average values for
each grid cell of the currently highlighted variable as a color map.
In Fig. 3, the average map is shown for the BTRAN (transpiration
beta factor) variable. If the “Update Average Map Based on
Selection” option is checked, the average map will be generated
on-the-fly based on the currently selected time range, data set,
and variable of interest. If this option is not enabled, the map will
represent the average for all years in the data set for the selected
variable and data set.

dataset

When the filter criteria have been selected, we click the “Read
CLM Data” button to read the data from the simulation(s). When
these data are read into the system, a new visual analysis canvas,
called the VisFrame (see Fig. 1), is displayed for subsequent
detailed investigation.

6.2. Visual exploratory data analysis

The VisFrame is an interactive multivariate visual analysis canvas
that is composed of a number of inferential information visualization
techniques that are connected together in a coordinated model. The
VisFrame is built around a highly interactive variant of the parallel
coordinates visualization technique (Inselberg, 1985). A common set
of parallel coordinates features are available in EDEN, such as
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Fig. 5. As the user forms visual queries in the VisFrame, a correlation matrix (a) is dynamically calculated and displayed graphically using red and blue color-filled boxes for
negative and positive correlations, respectively. We use a saturation color scale (b) that maps stronger correlations to more saturated colors making these associations more
visually salient. (a) Correlation matrix and (b) color scale. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this

article.)
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movable axes, details-on-demand, polyline brushings, and auto-
mated axis arrangement. We have extended the parallel coordinate
plot with a number of techniques that use statistical analytics to
augment the display for guided analysis.

6.2.1. Dynamic dimensional summarization via embedded
visualizations

In the parallel coordinates visualization, each vertical axis
represents one of the variables selected in the CLM filter panel.
Five additional axes are added to the selection: data set id, year,
month, latitude, and longitude. The axes are augmented with
embedded visual cues that guide the scientists' exploration of the
information space (Willett et al., 2007). Scientists can rapidly build
visual queries by brushing regions of the axes to select lines of
interest (see 6 in Fig. 4) which represent multivariate tuples of the
selected data. In this way, multiple queries on separate axes are
used to construct conjunctive selections, as shown in Fig. 1, where
polylines from data set 2 (‘tropics_warming_th_q_co2’) and month
7 (July) are selected. The selected polylines are shaded dark gray
while the non-selected lines are shaded light gray.

Certain key descriptive statistics are graphically represented in
the interior boxes for each axis. The wide boxes (see 5 in Fig. 4)
represent the statistics for all axis samples, while the more narrow
boxes (see 4 in Fig. 4) capture the statistics for the samples that are
currently selected. The statistical displays can be configured to
show the mean-centered standard deviations (see left axis in
Fig. 4) or a box plot with whiskers (see right axis in Fig. 4).
In the standard deviation mode, the height of the box is equal to
two standard deviations centered about the mean value which is
represented by the thick horizontal line dividing the box (see 4a,
5a in Fig. 4). In the box plot mode, the box height represents the
interquartile range (IQR) and the thick horizontal line is the
median value. Additionally, the whisker lines (see 4b, 5b in
Fig. 4) are shown in the box plot mode. The frequency information
can also be displayed on each axis as shaded histogram bins (see
3 in Fig. 4) with widths that are indicative of the number of
polylines that pass through the bins sector on the axis.

6.2.2. Detailed exploratory analysis with coordinated scatterplots

As the scientist forms visual queries in parallel coordinates, the
interactions are propagated to the other views of the data. One of
these views includes a panel of scatterplots shown below the axes.
In Fig. 1, the TSA (2-meter air temperature) axis is highlighted
resulting in scatterplots that map TSA to the scatterplot's x-axis
and the variable representing the axis above the scatter plot to the
scatterplot's y-axis (see 7 in Fig. 4). These scatterplots complement
the parallel coordinates visualization by providing additional
detail such as nonlinear trends, thresholds, and clusters. The
scatterplots are linked to the other visualizations so that the
shading configuration of the points reflects the current multi-
variate query in the parallel coordinates display and vice versa.
Double clicking one of these scatterplots will display a separate
scatterplot window with more detail as shown in Fig. 7. Further-
more, the user can select data points and these selections are
propagated to the other views.

6.2.3. Guided visual analysis with graphical correlation indicators
EDEN facilitates visual correlation mining to judge the strength
of interrelated variables and visually highlight significant associa-
tions. The correlation statistics are updated, based on user selec-
tions, and used to augment the displays. For each possible pairing
of axes, the system automatically calculates the Pearson product-
moment correlation coefficient, r. Given a series of n measure-
ments of the variables X and Y written as x; and y; where

i=1,2,...,n, ris given by evaluating the following equation:
nyxyi—(Xx) (XY
VIR —(TP Y2 —(y,)]

This computation yields a correlation matrix where each i, j
element is equal to the r value between the i and j variables. This
matrix is displayed graphically as shown in Fig. 5. The blocks are
encoded with color to indicate the type (blue for negative and red
for positive) and strength (stronger correlations receive more
saturated colors) of the correlation. Double-clicking a correlation
matrix block will cause a separate scatterplot window to display
with the variables of interest.

In the parallel coordinates plot, the display can be configured to
show rows (which correspond to a variable axis) from the correlation
matrix beneath the corresponding axis label (see 2 in Fig. 4). The
correlation indicator for the currently highlighted axis is enlarged for
each axis' correlation indicator row (see 2a in Fig. 4) to make the
relationship more visually salient. For example, in Fig. 1 the TSA axis
is highlighted which enlarges the last correlation indicator block for
each axis. The strongest correlation with TSA can be determined by
seeing the highly saturated red correlation indicator on the PCO2
(atmospheric partial pressure of CO,) axis.

r=

(M

7. Practical evaluations of EDEN for climate analysis

EDEN is currently used by climate researchers, some of which are
co-authors on this paper, to analyze real world CLM4 data sets.
Depending on the simulation time range and fidelity, these data sets
are typically in the range of terabytes in current experiments with
360 variables. Despite the challenges, EDEN performs well, offering
interactive frame rates and efficient filtering and interactive sum-
marization. EDEN accommodates larger scale data sets on high-
performance platforms, such as ORNL's Titan supercomputer (the
fastest supercomputer in the world at the time of this writing®).
Climate researchers use EDEN on supercomputers, desktop work-
stations, and even laptops using a variety of operating systems.

Before EDEN, climate researchers executed the CLM diagnostics
package, which consists of scripts that generate several hundred
static plots from the data set. The scientists then manually look at
the plots to glean interesting associations. EDEN improves on this
process by not only providing new multivariate views of the data,
but also by providing interactive exploration of the parameter
space with dynamic visual queries. In this section, we provide two
illustrative case studies demonstrating the power of EDEN in a
global case study and a smaller point-based ensemble analysis.
These case studies involve real-world simulations and the analysis
is driven by the climate scientists who co-authored this paper.

7.1. CLM4 global case study

Using the Global CLM Filter Panel, we analyze global data from
an actual experiment to study the sensitivity of tropical carbon
fluxes to potential climate change. In this study, the model
configurations followed Mao et al. (2013); Shi et al. (2013) and
the following analysis involves three CLM4 simulations - one
control and two with prescribed increases in temperature and CO,
input variables. As shown in Fig. 1, we select all three simulations,
January and July for 5 years, the Amazonia region, and variables
BTRAN, GPP, PCO2, QVEGT, RAIN, TLAI, TOTVEGC, and TSA. Fig. 6
(a) shows the VisFrame after reading the data and averaging the
months over the selected years and with the TSA axis selected. The
‘tropics_warming_th_q_co2’ simulation (data set identifier=2) is

4 November 2012 Top 500 List: http://www.top500.org/lists/2012/11/
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Fig. 6. Data from the Amazonia region is investigated for three CLM4 simulations. We have selected the polylines for a simulation in which CO, parameters have been
increased. In (a), the TSA axis is highlighted. We observe the PCO2 vs. TSA scatterplot and the parallel coordinate plot to verify that CO, has been increased in the selected
simulation. In (b), the RAIN axis is highlighted. Also, we have selected polylines for the month of July and the more northern latitudes. The scatterplots for the selection reveal
sharp increases that reach a threshold and then either drop or level off.

selected (see the first axis brushing) which shows that the 9970
selected polylines cluster on the upper range of the PCO2 axis (see
the PCO2 axis and the scatterplot below it). This observation
validates the instrumentation of the selected simulation with

increased CO, levels. Also, we see that BTRAN, GPP, TLAI, TOT-
VEGC, and TSA values are increased to a lesser degree in this
simulation by observing differences between the axes variability
boxes for the selected (narrow boxes) and all (wider boxes)
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Fig. 7. In these figures, we examine the GPP vs. RAIN (a) and TOTVEGC vs. RAIN (b) relationships from Fig. 6(b) in more detailed scatterplots. In (a), we find that GPP
increases very rapidly as RAIN increases up to a certain threshold (RAIN=0.000024 mm/s) above which the slope levels off and GPP increases at a much slower rate. In (b),
we see the relationship between TOTVEGC and RAIN and for the CO, simulation for the month of January. The plot reveals a strong positively correlated relationship with
similar trends as in the GPP vs. RAIN plot, but here we see three clusters of points. The clusters follow the same trends but with different threshold values for RAIN. (a) GPP

vs. RAIN and (b) TOTVEGC vs. RAIN.

polylines. The variability boxes also show that transpiration
(QVEGT) values are typically lower and RAIN values are nearly
equal for the selected simulation. Precise numerical listings of the
summary statistics are shown in the table beneath the parallel
coordinates plot. For example, the TSA average is about 298.3 K for
the ‘tropics_warming_th_q_co2’ simulation (see Fig. 6(a)) which is
about 3 K warmer than the control simulation (not shown). These
observations reveal one of the major findings from the experi-
ment: CO, and temperature increases cause an increase in gross
primary production (GPP). The ability to derive this information
shows how the EDEN framework facilitates not only intuitive
exploratory data analysis, but also validation and verification of
the parameter instrumentation.

In Fig. 6(b), we have the same data shown in Fig. 6(a), except
now the RAIN axis is highlighted and the mid to upper latitude
range is selected (see the geographic plot and ‘lat’ axis). We can
identify interesting features in the parallel coordinate plot, such as
the clustering of three groups of data on the TOTVEGC axis. But we
also glean insight from the shapes in the scatterplots below the
axes. In nearly all the selected variable axes, we see that as RAIN
increases it produces sharp increases in the y-axis variables up to a
certain threshold, above which the y-axis variables either level off
or decrease slightly.

In Fig. 7, we have double-clicked on the GPP vs. RAIN and
the TOTVEGC vs. RAIN scatterplots to show a detailed view.
In Fig. 7(a) we see a sharp increase in GPP until RAIN reaches a
value of about 0.000024 mm/s, above which GPP seems to level off
significantly. In Fig. 7(b) we see similar trends in the shapes of the
point profiles, but here we see three clusters of points, as noted
above, which correspond to three different thresholds but with
similar overall trends. It is also significant to note that the same
threshold for GPP vs. RAIN noted above appears to be a threshold
in the TOTVEGC vs. RAIN relationship.

In Fig. 1, the scatterplot of GPP vs. QVEGT reveals an interesting
nonlinear relationship for ‘topics_warming_th_q_co2’ data set and

the month of July. As GPP increases, QVEGT increases sharply and
then begins to level off until a threshold is reached, above which
QVEGT begins to decrease sharply. These visually detectable
thresholds and profiles are examples of unexpected discoveries
that the climate scientists were not aware of until exploring the
data in EDEN. The ability to interactively explore relationships
with visual guidance fed by statistical analytics is a profound
concept that paves the way for more extensive scientific inquiries.

7.2. CLM4 point ensemble case study

EDEN is also used for detailed analysis of CLM4 point ensem-
bles. The data set is for the location of the Harvard Forest eddy
covariance flux tower (42.5378N, 721715W) and includes 11
variables (3 parameters and 8 output variables) averaged for the
month of May over 10 years (1995-2004). This data set contains
134 model simulations in which the 3 parameters were varied to
examine parameter sensitivities in the 8 output variables (Hou
et al,, 2012).

In Fig. 8(a), the initial parallel coordinates plot is shown after
loading the data set. From this plot, several interesting features in
the data are revealed. First of all, the variability boxes on the first
3 axes (these are the parameter axes) reveal uniform distributions,
reflecting the sampling strategy used to generate the model
parameters. The statistical variation boxes on the other eight axes
suggest skewed distributions toward either the minimum (e.g.,
runoff and SH) or maximum values. In Fig. 8(a), the SH (sensible
heat flux) axis is highlighted, revealing strong correlations (notice
the highly saturated correlation indicator blocks that are enlarged
below each axis label) with the other 7 output variables (runoff,
LH, SH, GPP, TLAI, TOTVEGC, and TOTSOMC). These strong correla-
tions reflect the interrelated nature of the model outputs. For
example, low values of total runoff (runoff) and SH as described
above occur in simulations in which there are low amounts
of foliage (low TLAI and TOTVEGC). Low foliage means low trans-
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Fig. 8. In (a), the initial view of the Harvard point ensemble data set is shown after loading into EDEN. With the SH axis highlighted, this view reveals strong correlations
with the other 6 output variables and a moderately strong correlation with the runoff variable. In (b), we have selected polylines below the Sy parameter threshold of 0.2 (see
brushing on Sy axis). These tuples all fall into one cluster of polylines, which indicates a particular sensitivity for this parameter. This is the central promise of such
exploratory tools as EDEN and the exact kind of insight scientists seek to glean from these data sets.

piration (a component of LH), leaving more soil water available
for runoff and more net energy available for sensible heat.
These strong feedbacks between vegetation and soil hydrology
are one example of many where potentially unexpected relation-
ships exist between indirectly connected CLM4 model parameters
and outputs.

Although Fig. 8(a) is useful for representing broad relationships
among the variables, outliers exercise too much influence on the
display making it difficult to form more detailed judgments on the
correlation and distribution patterns. We select the 15 outlier
polylines and remove them from the display (see Fig. 8(b)). With
the outliers removed, we see more structure in both the parallel
coordinates and the scatterplots. Next, we highlight the polylines
below the Sy (average specific yield) parameter value of 0.2.
We find that simulations with high SH correspond to low values
for LH and high values for BTRAN. Conversely, the lines crossing
the upper range of SH have a negative correlation pattern with
LH (notice the ‘X’ shaped crossing for the selected lines between the
SH and LH axes in Fig. 8(b)). The bimodality appears to be driven by
the threshold value of Sy near 0.2, above which runoff is near the

minimum value and below which there is increased runoff and also
increased variability of this and other output variables. In this study,
EDEN has helped to identify a particular parameter sensitivity with
the Sy parameter, thus, corroborating the notion that EDEN improves
this type of exploratory analysis. This type of study is vital to climate
researchers in their identification of thresholds and tipping points,
uncertainty quantification, and other similar tasks that will benefit
from interactive exploration.

8. Discussion

The general success of EDEN and its broader adoption in the
climate community can be largely attributed to the fact that the
domain experts were tightly integrated in the development
process and subsequent design iterations. This was a intentional
strategy from the start, and we believe that it mutually benefited
all parties involved. Initially, we focused our attention on the
general techniques and overall visual design, but our effort
reached a critical mass, as it were, when we identified a clear case
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study to focus our efforts. As we witness the evolution of EDEN, it
is clear that our frequent interactions guarantee that EDEN
responds to the actual needs of the end-users, thus enhancing
adoption in the larger community. It is also important to note that
although the climate scientists were not familiar with parallel
coordinates or scented widgets, they quickly learned the concepts
and foresaw the benefits more rapidly as members of the devel-
opment team. Furthermore, the flexibility of the interface to
accommodate dynamic visual queries is a major improvement
over the laborious process of sifting through hundreds of plots
from pre-determined queries executed in external scripts. With
interactive feedback, the scientist is effectively connected to the
data behind the visualization, thereby enhancing the process of
formulating and confirming hypotheses.

Because EDEN is an ongoing development, we have identified
some areas to further improve its capacity to surmount challenges
of climate analysis. The inability to support direct comparisons
between different queries, in time, space, and between different
simulations, is a key feature that is not currently supported
in EDEN. However, some of the basic building blocks are available
in EDEN, and we are currently formulating new methods to
facilitate these comparisons as well as support for observational
data. It has been noted that the VisFrame map, a geographic
scatterplot, is limited in its functionality. We are currently expand-
ing the map to facilitate navigation and new multivariate visuali-
zations. Because EDEN's visual query interface is very flexible,
it can be difficult to resume analysis after closing and restarting
the application. Thus, we are investigating mechanisms to save
configurations and track workflow provenance. One option for
doing this would be to take advantage of the VisTrails mechanism
which is embedded in UV-CDAT (Bavoil et al., 2005). We are also
interested in exploring in situ analysis of the climate simulation
data during the actual model execution to streamline and reduce
knowledge discovery timeframes. Finally, we are adding new data
mining and machine learning algorithms that can automatically
suggest associations and intuitively encourage human participation
in analytical models.

9. Conclusion

EDEN is a unique multivariate analysis tool that has been
designed in close collaboration with climate scientists to address
the exploratory analysis and “big data” challenges inherent to today's
climate science. EDEN is an ongoing project that is in use today for
several real-world climate studies and it is freely available for
download. In our case studies and through EDEN's practical use,
we demonstrate the promise of an interactive visual analytics
approach for more productive climate analysis. EDEN and other tools
developed in this same spirit deliver on the central promise of visual
analytics. Such techniques will be key enablers for fielding test-bed
environments that climate scientists desperately need.
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