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a b s t r a c t 

Flexible visual analysis of long, high-resolution, and irregularly sampled time series data from multiple 

sensor streams is a challenge in several domains. In the field of additive manufacturing, this capability is 

critical for realizing the full potential of large-scale 3D printers. In this paper, we propose a visual ana- 

lytics approach that helps additive manufacturing researchers acquire a deep understanding of patterns 

in log and imagery data collected by 3D printers. Specific goals include discovering patterns related to 

defects and system performance issues, optimizing build configurations to avoid defects, and increasing 

production efficiency. We introduce Falcon, a new visual analytics system that allows users to interac- 

tively explore large, time-oriented data sets from multiple linked perspectives. Falcon provides overviews, 

detailed views, and unique segmented time series visualizations, all with adjustable scale options. To il- 

lustrate the effectiveness of Falcon at providing thorough and efficient knowledge discovery, we present 

a practical case study involving experts in additive manufacturing and data from a large-scale 3D printer. 

Although the focus of this paper is on additive manufacturing, the techniques described are applicable to 

the analysis of any quantitative time series. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

The ability to find and thoroughly understand patterns in time

series data is a fundamental requirement in many domains. With

small to moderate size data sets involving a few variables and

regular sampling intervals, basic graphs and statistical calculations

are effective at revealing important features. However, these tech-

niques are inadequate for analyzing time series data from multi-

ple sensors that are long (multiple days), large (millions of data
� This manuscript has been authored by UT-Battelle, LLC under Contract No. 
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oints), multivariate, and irregularly sampled. Such is the scenario

aced daily by researchers in the field of additive manufacturing,

here large-scale 3D printers are used to synthesize complex ob-

ects for industrial purposes. 

Recent advances in additive manufacturing have improved pro-

uction value by removing traditional manufacturing constraints

nd providing unprecedented geometrical freedom. The Oak Ridge

ational Laboratory (ORNL) Manufacturing Demonstration Facility

MDF) is at the forefront of this disruptive technology. Using mul-

iple large-scale 3D printing systems, such as the Arcam Q10 sys-

em shown in Fig. 2 , MDF researchers execute builds of complex

bjects and study both the printer log files and microstructure of

he printed objects (see Fig. 1 ) to make fundamental scientific con-

ributions related to the efficacy of the 3D printing process. The re-

ults of these investigations also enable the construction of unique

rototypes, namely aerospace components, advanced robotics, and

utomobiles. 

The key to realizing the full potential of additive manufacturing

ies in providing researchers with intuitive tools that support

xploratory analysis of the data produced by 3D printing sys-

ems. However, the size and complexity of the data exceed the

http://dx.doi.org/10.1016/j.cag.2017.02.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
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http://dx.doi.org/10.1016/j.cag.2017.02.005
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Fig. 1. Falcon is a visual analytics system used daily by additive manufacturing re- 

searchers to explore log and imagery data from 3D printers. Here two additive man- 

ufacturing researchers from the ORNL Manufacturing Demonstration Facility (MDF) 

are using Falcon on a curved, wide-aspect display to take advantage of the horizon- 

tally oriented time series visualizations. Having the printed objects on the desk, the 

researchers are able to supplement the data analysis with physical examinations. 
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apabilities of most general purpose data analysis systems. To

ddress this capability gap, we have developed the Falcon visual

nalytics system using a collaborative, participatory design process

ith additive manufacturing experts. Although we apply Falcon

o additive manufacturing in the current work, it is useful for any

roblem that involves the analysis of quantitative, time series data.

From a visual analytics perspective, Falcon combines several in-

eractive data visualization techniques that extend the scalability of

onventional time series analysis methods. The system design is in-

pired by the visual information seeking strategy [1] where zoom-

ng and filtering operations permit the descent from overviews to

etailed data visualizations. Using both time-oriented and statisti-

al views, Falcon coordinates user interactions in multiple visual-

zations to allow comparative visual analysis of long time series

ata that are sampled irregularly with subsecond precision. The

ystem also utilizes the concept of information scent [2] where

uantitative values from time series similarity and statistical al-

orithms are visually encoded within the user interface to high-

ight interesting relationships and reduce the search space. The co-

lescence of these capabilities into a visual analytics system helps
ig. 2. The Arcam Q10 3D system is a large-scale 3D printer that uses electron beam 

y slices taken through a CAD model’s z dimension, progressing from the bottom to the

emoving many traditional manufacturing constraints and giving designers greater geome
esearchers acquire a deeper understanding of 3D printing sys-

ems while reducing knowledge discovery timelines—the central

romise of visual analytics. 

.1. Contributions 

In the current work, we describe a system that addresses sev-

ral key challenges faced in the exploratory analysis of data from

D printers. This system has evolved based on an iterative design

rocess with additive manufacturing researchers, who are also co-

uthors on this paper. The main contributions of the current work

nclude the following: 

• We describe the Falcon system, which goes beyond previous

systems to support scalable exploratory analysis of long and

complex time series data involving multiple variables and ir-

regular sampling. 
• We describe a new visualization technique, called the waterfall

visualization, that combines overview and detail using minia-

turized graphics. 
• We describe a new segmented time series visualization tech-

nique that provides synchronized views of time series and im-

agery data with visual representations of information scent de-

rived from time series similarity algorithms. 
• We present a practical evaluation of Falcon in which an addi-

tive manufacturing researcher analyzes real 3D printer data. To

the best of our knowledge, this paper documents the first appli-

cation of visual analytics to the field of additive manufacturing

and it represents an important success story of applying visual

analytics to a challenging and significant domain. Key findings

from this case study, which represents the daily workflow of an

additive manufacturing researcher, have led to new knowledge

about the 3D printing process. 

.2. Outline 

After a survey of related work in Section 2 , we provide back-

round on additive manufacturing in Section 3 followed by an

verview of key challenges for analyzing 3D printer data in

ection 4 . In Section 5 , we describe the visual analysis techniques

rovided by the Falcon system. Then, in Section 6 , we present

 real case study in which 3D printer log data is analyzed. In

ection 7 , we reflect on key observations related to analytic

orkflows, our interdisciplinary development, and domain specific
melting to build metal objects. Each layer is melted using the geometry defined 

 top of the build. This technology is transforming the manufacturing industry by 

trical freedom. 
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capabilities. Finally, in Section 8 we describe future work and in

Section 9 we summarize our results. 

2. Related work 

Due to the copious nature of time-oriented data, a large body

of work exists on time-based visualization techniques as evidenced

by recent reviews of the field [3,4] . Some systems are designed

with a very specific use case in mind to maximize the discov-

ery of time-based insight. For example, many social media visual

analytics systems (e.g. Leadline [5] , Matisse [6] , Visual Backchan-

nel [7] ) incorporate some form of time-based visualization as the

central view with other linked views serving to supplement the

temporal patterns. Social media visual analytics systems are a spe-

cific form of text visualization systems (e.g., ThemeRiver [8] , Even-

tRiver [9] , and TextFlow [10] ), which also tend to include a promi-

nent time-based visualization component. But time-based analysis

permeates nearly all domains, namely, climate [11,12] , cyber secu-

rity [13] , and parallel computing performance monitoring [14] . Fal-

con can be classified as a domain specific system with general ap-

plicability to any quantitative time series data. 

In addition to domain based systems research, a substantial

segment of time-based visualizations are devoted to generic tech-

niques that can be applied to a range of data sets. Most of these

techniques represent time using line plots or bar charts with ei-

ther variations on the graphical representation or enhancements

that allow interactive visual queries. Examples of line plot vari-

ations that are designed to increase the number of comparable

time series include small multiples [15] and sparklines [16] , hori-

zon graphs [17] , and braided graphs [18] . 

To provide multi-scale views, van Wijk [19] used a calendar-

based visualization to analyze time series data aggregated on a

daily, weekly, or monthly basis via a similarity clustering method.

Spiral layouts of the time axis are used in the SpiralGraph [20] and

SpiralView [21] techniques. These spiral layouts perform poorly

with long time series, but excel at showing recurring patterns.

VizTree [22] presents a very unique representation of time series

data that uses a sequence of symbols and a suffix tree. Although

VizTree may be helpful for very large data sets, the view can be

difficult to decode, especially for fledgling users. The TimeBench li-

brary [23] describes a general data model for time-oriented data

to support data visualization through multi-scale data structures.

In Falcon, common visual mappings are used for the visualizations

to ease adoption among non-visualization experts. However, the

waterfall visualization technique includes some subtle expressive-

ness similar to the more abstract visual representations mentioned

above. 

Buno et al. [24] introduce a visualization technique in the Time-

Searcher 2 system that helps users see statistical summaries of

time series data. The method renders the minimum and maximum

range for each time record and a central line to show the mean

value. This overview visualization is similar to the time-oriented

summary visualizations presented by Brinton [25] , Tufte [26] , and

Bade et al. [27] . In Falcon, we use an extended version of these sta-

tistical representations to visualize an overview of time series data.

The TimeSearcher 2 system shows multiple time series simultane-

ously and provides the ability to search for similar patterns. Falcon

also offers simultaneous views, pattern matching capabilities, and

it provides additional support for visualizing irregularly sampled

data. 

Some time series visualizations use lens-based techniques to

magnify time ranges of interest by distorting the time axis. Kin-

caid et al. [28] introduced SignalLens which magnifies an area of

interest and compacts the areas on either side to maintain con-

text. Walker et al. [29] introduced the RiverLens technique, which

combines the SignalLens [28] and the River Plot [30] . Brushing
ime ranges expands the time series plot and shows an overlay

n the River plot. A River Plot is shown on either side to provide

ontext. Introduced by Zhao et al. [31] , ChronoLens is an interac-

ive visual analytics system that includes a lens-based technique to

upport elaborate analysis tasks. Traditional time series plots are

ugmented with lens distortions based on user selections. In addi-

ion, derived data, such as derivatives and moving averages, can be

hown on the graphs and zooming, resizing, and movement oper-

tions are applied to the lens to alleviate occlusion. 

Hao et al. [32] introduce an interest-based visualization using

 layout of time series plots that reveals hierarchical relationships.

imilarly, Stack Zoom is a multi-focus zooming technique described

y Javed et al. [33] that maintains context and temporal distance

uring zoom operations. User selections produce a hierarchy that is

epresented in a nested tree layout, which also serves as a graphi-

al history. 

Instead of lens-based techniques, Falcon uses multiple views

nd multi-scale zooming due to problems that may occur with dis-

orting the time axis. Plaisant et al. [34] introduce the concept of

verview and detail displays, which provide simultaneous views of

 focus visualization and an overview of the entire data series. The

verview provides context for the focus visualization and users can

rush areas of interest for detailed investigation. Falcon also pro-

ides zoom-and-filter interactions in the time series plots and fine-

rained control over the time scale used in the visualization. As the

oom level is increased, the width of the time series graph is ex-

anded while the display viewpoint remains constant. Scroll bars

llow the user to freely navigate the expanded time series. 

. Background 

To realize the full potential of additive manufacturing, re-

earchers seek a deeper understanding of the 3D printing process

also known as a build). Specific goals include discovering pat-

erns that indicate defects or system problems, optimizing build

onfigurations to reduce the occurrence of defects, and reducing

roduction costs. In addition to microscopic study of the actual

D printed objects, researchers must carefully study the log

les and imagery data captured by the 3D printer during builds

o achieve these goals. Prior attempts using conventional tools

e.g., R, Excel, and proprietary log analysis software from printer

anufacturers) have failed to provide efficient exploratory data

nalysis capabilities. 

Our interdisciplinary team postulates that a visual analytics ap-

roach will reduce knowledge discovery timelines, improve the

ccuracy of additive manufacturing data analysis, and provide a

eeper understanding of the 3D printing process. To practically

est this postulation, we have executed a participatory design pro-

ess to develop Falcon, which allows flexible data exploration with

iews and interactions that are designed to specifically address the

ata analysis challenges for this domain. In particular, we have fo-

used on the Arcam Q10 3D printer system, which is shown in

ig. 2 , and its unique electron beam melting process. In the re-

ainder of this section, we provide background on the 3D printing

rocess and data generated by the Q10 printer. 

.1. 3D printing process overview 

As shown in Fig. 2 , a build begins when a Computer-Aided

esign (CAD) model is uploaded to the system. Beginning at the

ottom, the system prints each layer by extracting slices through

he height (or z ) dimension of the model. For each layer, the sys-

em’s rake mechanism prepares a layer of metal powder 50 mi-

rons (0.05 mm) thick. Then, the system completes a sequence of

tages to synthesize the layer. During the melt stage, an electron

eam melts the powder in the desired shape as defined by the
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Fig. 3. During a 3D print, the Arcam Q10 system collects sensor and diagnostic data 

in a textual log file. The file extract shown here, which is the subject of the case 

study in the paper, is from an 8-hr build and it contains 23,977 different variables 

and over 3 million data values that are recorded with subsecond accuracy and at 

different intervals. Each line in the file begins with a date/time stamp followed by 

the variable name, metadata, and the value. Although we currently focus on the 

quantitative values, categorical and Boolean data types are also stored. 

C  

f  

a  

q  

d

3

 

a  

o  

t  

s  

a  

h  

a  

t

 

i  

r  

c  

v  

o  

t  

c  

a  

p  

b

 

s  

s  

s  

t  

a

4

 

p  

d  

r  

c  

g  

r  

a

4

 

t  

t  

f  

q  

i  

t  

t  

e  

q  

t

 

t  

t  

a  

e  

t  

a  

t

4

 

c  

c  

t  

l  

F  

g  

t

4

 

c  

f  

m

b  

s  

p  

w

 

p  

t  

v  

f  

l

4

a

 

t  

s  

i  

s  

t  

f  

b  

v  
AD model slice. When finished, the printed objects are removed

rom the powder and unused material is recycled. This process en-

bles the production of objects with complex geometries that re-

uire neither additional tooling or fixtures, and it avoids the pro-

uction of significant amounts of waste material. 

.2. 3D printer data description 

During a build, the Arcam Q10 system records sensor readings

nd diagnostic data in a textual log file (see Fig. 3 ). Reconstruction

f a build for analytic purposes can only be accomplished using

his data. A single 3D printer log file contains readings from thou-

ands of different sensors and diagnostic modules. The readings

re captured and stored during the build, which may take several

ours and sometimes multiple days to complete. The data values

re stored with time stamps at sub-second accuracy and irregular

ime sampling intervals. 

When a build is initiated, an initial reading for each variable

s recorded in the log. Thereafter, new variable values are only

ecorded as sensor and diagnostics report changes. As a result, ex-

ept for the first time stamp, most time records will have only one

ariable value. Some variables contain tens of thousands of values,

thers contain hundreds, and some may have less than ten. Fur-

hermore, although most of the variables are quantitative and we

urrently only focus on these values, some variables are Boolean

nd others are categorical. In addition to the textual log file, the

rinter captures a single near IR image at the completion of each

uild layer. 

For a typical build, the total disk space that is required to

tore both the log and imagery data is approximately 50 GBs. Re-

earchers commonly compare features between multiple builds,

ometimes dozens and more recently hundreds. Therefore, the to-

al size of data under investigation can easily reach multiple TBs

nd exceed the limits of most conventional analysis tools. 

. Key challenges of analyzing 3D printer data 

Providing efficient exploratory analysis capabilities for 3D

rinter data is challenging for several reasons. Our interdisciplinary

esign team, which includes additive manufacturing experts who
egularly use Falcon to analyze their data, have identified these

hallenges and used them to form design requirements that have

uided the participatory design and development of Falcon. In the

emainder of this section, the most critical challenges and associ-

ted requirements are described. 

.1. The exploratory nature of the field 

Due to rapid technological advances in the additive manufac-

uring field, the questions that are asked of the data are often

oo exploratory for a completely scripted analytic workflow. There-

ore, researchers require tools that allow them to interactively ask

uestions of their data, while not confining them to the original

deas that prompted the data collection. Indeed, historical reflec-

ions upon some of the most significant scientific discoveries show

hat profound findings are often unexpected [35] . Furthermore, the

xploration process is iterative as new discoveries lead to new

uestions and the analytical discourse continues in a cycle until

he researcher is satisfied. 

Prior to the development of Falcon, researchers used a collec-

ion of analysis tools (e.g. R, Excel, and proprietary log viewers)

o explore the data. Although powerful, limited interactive visual

nalysis capabilities forced researchers to switch between differ-

nt static views and use scripting interfaces to ask questions of

he data. Consequently, true exploratory capabilities were never

chieved, analytics sessions stagnated, and knowledge discovery

ime cycles were delayed. 

.1.1. Requirement 1 (R1): support exploratory analysis 

To provide true exploratory data analysis capabilities, human-

entered, visual interactions are required that give the researcher

ontrol over the direction of the analysis process. These interac-

ions must be coordinated across multiple views of the data to al-

ow researchers to highlight patterns from multiple perspectives.

urthermore, the interactions should feed automated analytical al-

orithms to highlight similar temporal and statistical patterns au-

omatically. 

.2. Finding patterns in long and complex time series data 

Time is the primary dimension for analyzing log data, espe-

ially with 3D printers where known event sequences are studied

or each layer of the build (e.g., initialization, material preparation,

elting). Consequently, additive manufacturing researchers usually 

egin with time-based data visualizations. However, conventional

ystems cannot cope with the length and complexities of the 3D

rinter log data (see Section 3.2 ) without drastic data reductions,

hich often blur key patterns. 

Additive manufacturing researchers are usually interested in

atterns that are visible at different time scales. Macroscale pat-

erns, such as the relative duration required to print each layer, are

isible in overviews of the entire data set. Conversely, microscale

eatures, such as system circuit resets, only appear at the finest

evels of granularity. 

.2.1. Requirement 2 (R2): support multi-scale temporal visual 

nalysis 

To enable temporal data analysis, the user requires the ability

o retrieve multiple visual encoding techniques that emphasize the

equential order and relative changes for temporal values, includ-

ng detailed segmentation techniques. Overviews are necessary to

how broad trends and help the user maintain context for selec-

ions in other detailed views. As the use of overviews implies some

orm of aggregation, the loss of information in these views should

e offset by displaying variability measures with the aggregated

isualization. In detailed temporal visualizations, the user requires
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1 Documentation on the Java SE 8 TreeMap class is available online at http://docs. 

oracle.com/javase/8/docs/api/java/util/TreeMap.html 
the ability to interactively adjust the time scale using the hierarchi-

cal nature of time (e.g., hours, minutes, seconds) to flexibly access

the most appropriate detail level for particular features. 

4.3. Supplemental statistical analysis 

Descriptive statistics and their visual representations reveal

broad trends in large data sets, and additive manufacturing re-

searchers commonly employ statistical visualizations to study the

3D printer logs. They primarily rely on visualizations of value dis-

tributions and descriptive statistics. In addition to broad trends, vi-

sual statistical representations help scientists identify normal vari-

ation ranges, detect outliers, and form patterns for certifying the

quality of 3D printed objects. 

Prior to the development of Falcon, researchers created static

statistical plots disconnected from the time-based visualizations,

which precluded holistic analysis due to multiple disjoint views.

Furthermore, researchers struggled to dynamically create views

that focus on different scales or time ranges of interest due to a

reliance on scripted analysis frameworks. 

4.3.1. Requirement 3 (R3): support supplemental statistical analysis 

Additive manufacturing researchers require interactive statisti-

cal visualizations, which encode frequency and summary informa-

tion. These visualizations should supplement the time series visu-

alizations to provide additional insight, and they should include

the ability to access multiple scales. 

4.4. Multivariate comparisons across multiple views 

Additive manufacturing researchers require the ability to

quickly compare both univariate and multivariate patterns across

multiple views. As researchers formulate specific criteria for cer-

tifying build quality, unique view combinations and interactive

manipulation of view parameters are necessary, but difficult to

construct and analyze, using conventional tools. For example, a

researcher may wish to study time series and statistical views

for dozens of variables at different time ranges to identify and

understand patterns that indicate defects. As conventional tools

lack the flexibility and linkages to quickly build these views,

researchers are forced to view multiple static plots independently,

which can delay the formulation of insight due to human memory

limitations from one glance to the next [36] . 

Linking techniques alleviate these issues by interactively relat-

ing information between different views [37,38] . Brushing and link-

ing is the most common view coordination strategy [39] , in which

interactive selections in one view are propagated to other views,

where corresponding items are highlighted automatically. The link-

age helps users form a more complete mental model of the data

by combining input from different representations that emphasize

particular features. 

4.4.1. Requirement 4 (R4): support multivariate comparisons across 

multiple views 

To support comparative analysis across different views and mul-

tiple scales, multiple visualizations of 3D printer build data are re-

quired where each view emphasizes a particular aspect (e.g. sta-

tistical versus temporal, different time ranges, different scales). In

response to user interactions, each view should update its visual

representation and propagate the changes to other linked views,

which should also be updated. 

5. Introducing Falcon 

The Falcon visual analytics system combines interactive data

visualization, automated statistical analytics, and data processing
outines to form a human-centered interface that supports the for-

ulation of hypotheses in complex time series. Falcon is an open

ource, standalone application implemented entirely in the Java

rogramming language and it is suitable for use on a laptop or

orkstation computer. The system uses the JavaFX graphics API,

hich utilizes system GPUs, when present, for faster rendering per-

ormance. In the remainder of this section, we provide a technical

escription of the main features that comprise Falcon. 

.1. Scalable data processing and organization 

Before analysis can begin, the 3D printer log data must be con-

erted from its native text format into organized data structures.

s described in Section 3.2 , the data are large, irregularly sam-

led with sub-second accuracy, multivariate, and include near IR

magery captured for each build layer. Often researchers will com-

are data from multiple builds and the size of data under investi-

ation can reach multiple TBs. Therefore, Falcon requires efficient

emory management and indexing schemes to enable an interac-

ive user experience. 

Values for each variable are stored and indexed in a time series

ata structure, which extends the java.util.TreeMap class from the

ava Standard Edition 8 library 1 . As an adaptation of the algorithms

escribed by Cormen et al. [40] , the Java TreeMap class is imple-

ented as a red-black tree data structure with guaranteed search-

ng in O( log n ) time. Raw data values are added to the TreeMap

sing the time stamp as the key and an array for the data values.

ata values are stored in an array to deal with situations where

ultiple values are reported for the same variable at the same

ime. This data structure greatly increases the rendering perfor-

ance for large time series as subtrees are quickly formed based

n the current visible range of values. 

To support the creation of overview visualizations in Falcon, a

inned variation of the time series data structure is utilized. The

ins cover equally spaced time ranges for the full time series and

he Java TreeMap class is again used to store and index the bin

bjects. The start time instant is used as the key for the bins, and

ach bin stores references to the values that fall within its time

ange. Each bin also computes and stores a set of key descriptive

tatistics for its contents (e.g., mean, standard deviation, quantiles,

in/max range). This same approach is used to create statistical

isualizations in Falcon using the value space, instead of the time

imension, for the bin construction. Both the frequency-based and

ime-based data structures support variable scale temporal binning

t different levels of detail. For example, the user can reconfigure

he time axis to show the data at hour, minute, or second inter-

als. The variable scale summaries allow users to descend to more

ranular time measurements for greater fidelity as needed. 

Most researchers confine their analyses to a particular set of

ariables. Except for metadata information, Falcon waits for the

ser to add a variable into the visualization panel before loading

ts data values. By loading information on-demand, Falcon requires

 smaller memory footprint as compared to loading the entire file

ontents when the file is first opened. Also, by scanning the log file

nitially to gather metadata, the caching mechanism in most oper-

ting systems will ensure fast access on future read operations. 

As shown in Fig. 4 , Falcon lists the file variables in a

ree panel on the left side of the window. With 3D printer

ogs, variables names are organized hierarchically by separating

he categories with a period character. For example, the vari-

ble selected in the tree view shown in Fig. 4 , is stored as

PC.PowerSupply.Beam.BeamCurrent in the log file. Falcon parses the

http://docs.oracle.com/javase/8/docs/api/java/util/TreeMap.html
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Fig. 4. The main analysis window (left) in Falcon consists of a set of interactive data visualizations that allow users to explore temporal and statistical patterns in time 

series data for multiple variables. The center variable visualization panel features both overview and detail visualizations. When time range selections are set (see the three 

rectangles with yellow borders in the BeamCurrent variable pane), a statistical summary pane is added to the selection details panel at right to summarize the selected 

data. From the main window, the user can access two additional analysis windows, which provide more detailed views of segments derived from the entire time series of a 

particular variable. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article). 
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ariable names in this form to build the levels of the tree view.

hen analyzing thousands of variables, the hierarchical organiza-

ion helps users search more efficiently. When variable names do

ot use this hierarchical organization, the tree will only have one

evel, below the file node. For comparative analysis of multiple

ata sets, Falcon also supports loading multiple files in the same

ession. 

.2. Falcon user interface layout 

As shown in Fig. 4 , Falcon consists of a main analysis win-

ow and two supplemental analysis windows. The main analysis

indow, which is designed for variable scale views, shows file

ariables and displays settings on the right, a variable visualization

anel in the center, and a selection details panel on the left.

or more detailed analysis, a segmented time series visualization

indow is available for a variable of interest. In addition to

egmenting the time series for the variable into smaller visual-

zations according to layer heights, the segmented view provides

nformation scent based on time series similarity algorithms. The

aterfall visualization window is another segmented view that

an be accessed for a variable of interest. The waterfall visualiza-

ion shows an overview with details using miniaturized graphics.

ogether these linked views address R1 (see Section 4.1.1 ) enabling

rue exploratory data analysis. In the remainder of this section, the

isual encodings and interactive techniques used in these analysis

indows are described. 

.3. Variable visualization panel 

The focal point of the main Falcon analysis window is the

ariable visualization panel (see Fig. 4 ), which provides multiple

iews for a specific variable. When a variable is selected, a new

orizontally-oriented visualization pane is added to this panel.

ll variable panes currently under investigation are stacked ver-

ically in the scrollable panel. We avoid alternative visualization

echniques that superimpose the representations of multiple vari-

bles within a single plot area (e.g., Bertin’s indexing method [41] )

ecause additive manufacturing researchers prefer stacked, inde-

endent views that enable comparative analysis of different time
anges for multiple variables with varying units and scales. With

he stacked layout, the number of variables that can be analyzed

imultaneously is only limited by the resolution of the display de-

ice. The order of the panes and their removal from the panel is

ontrolled using the buttons on the left side. This panel addresses

4 (see Section 4.4.1 ) by providing reconfigurable perspectives of

ultivariate patterns. As shown in Fig. 5 , each pane consists of a

oomable detail time series visualization (left) and two overview

isualizations (right). These interactive views are linked so that

rushings and other manipulations are shared. 

.3.1. Variable overview visualizations 

Fig. 5 shows the overview region of the variable pane, which

onsists of two visualizations: a statistical visualization (top) and

 time series visualization (bottom). These visualizations address

oth the temporal overview requirement of R2 (see Section 4.2.1 )

nd the statistical overview requirement of R3 (see Section 4.3.1 ).

he statistical visualization displays the frequency distribution and

ummary statistics of the entire variable distribution. We use a

tandard histogram plot, which counts the number of values that

all within equally sized bins over the distribution space. From the

ettings panel, the user can change the number of bins, plot height,

inimum and maximum values of the x -axis scale, and maximum

ount value of the y -axis scale. 

As shown in Fig. 6 , the bin counts are visually encoded as the

eight of the bars in the histogram plot. The result is an overview

f the distribution for the variable of interest. To access detailed

nformation, the user can hover over a bin (see Fig. 6 ) to see a

ooltip with the numerical values and the bin’s upper and lower

imits. As the visible time range of the detail time series visualiza-

ion changes, the histogram plot receives the updated set of visible

alues and shows darker bars on the histogram to indicate the per-

entage of the overall bin count. 

In addition to the frequency distribution, summary statistics are

alculated for both the entire distribution and the visible set of val-

es. As shown in Fig. 6 , these summary statistics are visually repre-

ented in a statistical visualization technique that is inspired by the

ox plot [42] . Here the dot represents the typical value (mean or

edian) and the width of the line represents the dispersion range
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Fig. 5. This figure shows a single variable visualization pane for the BeamCurrent variable. At right, two overview visualizations provide statistical (top) and temporal (bottom) 

context for the main detail time series visualization at left. The detail time series visualization includes an interactive time range selection capability and details-on-demand 

features through mouse gestures. By interactively adjusting the time scale of the detail visualization, the user can zoom in or out. 

Fig. 6. The statistical view in Falcon encodes the frequency distribution of values 

using a histogram. The darker portions encode the percentage of values shown in 

the visible portion of the detail time series visualization. Below the histogram, the 

mean (dot) and two times the standard deviation range (line width) are represented 

for both the entire distribution (bottom) and the visible data values (top). 

Fig. 7. The overview time series visualization creates an abridged visualization of 

the full time series. The visualization shows the mean values, and upper and lower 

standard deviation band, and the minimum and maximum value range. Two black 

horizontal bars show the relative position of the visible range in the detail time 

series visualization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b  

d  

t  

t  

s  

u  

i  

r

5

 

s  

d  

C  

o  

t  

u  

d  

t  

a  

S

 

e  

e  

t  

t  

m  

i

 

a  

s  

i  

r  

v  

w  

t  

t  

u  

i  

y  

d  

r

 

f  

p  

m  

s  

s  

t  
(two times the mean-centered standard deviation range or the in-

terquartile range). The statistics for the set of visible values in the

detail time series visualization are also shown using a dark gray

color (see Fig. 6 ). 

The overview time series visualization is rendered below the

overview statistical visualization (see Fig. 5 ). In this view, the en-

tire time series is condensed to fit the width of the variable pane

overview region. To avoid overcrowding, a statistical aggregation of

the full time series is shown. The system computes the maximum

and minimum value range, dispersion range, and typical values for

equally-sized time intervals (or bins) that cover the full time se-

ries. Using these summary values, the system creates an abridged

time series visualization (see Fig. 7 ). By default, the mean values

are shown as points that are connected with line segments. The

dispersion range is shown by doubling the standard deviation, and

centering it about the mean value. The upper and lower bounds for
oth the dispersion and minimum/maximum value range are ren-

ered as polylines. Alternatively, the visualization can be modified

o render the bin medians and interquartile ranges. The overview

ime series visualization provides context within the entire time

eries in a compact form. Although some details of the raw val-

es are hidden, the range representations visually encode variabil-

ty to compensate for the loss of information, thereby addressing

equirements from R2 (see Section 4.2.1 ). 

.3.2. Zoomable detail time series visualization 

In addition to the overviews, each variable pane includes a

crollable, detail time series visualization (see Fig. 5 ). Two user-

efined settings control the time scale along the x -axis: the Plot

hrono Unit , which controls the chronological time unit (e.g., sec-

nds, minutes, hours), and the Plot Unit Width , which determines

he pixel width of each time unit. These controls permit the

ser to interactively drill-down, or conversely roll-up, to access

ifferent time scale representations. This visualization addresses

he exploratory analysis requirements from R1 (see Section 4.1.1 )

nd the multi-scale, temporal visualization needs from R2 (see

ection 4.2.1 ). 

Based on these settings, the system maps the time stamp for

ach data item to the x axis and renders the data points for the

ntire time series. If the width of the time scale is greater than

he width of the panel, scroll bars appear to allow the user to vir-

ually navigate forward and backward in time. To increase perfor-

ance with long time series data, the system only renders the vis-

ble range of the time series, also known as the clip range. 

As shown in Fig. 5 , the detail visualization offers several inter-

ctive mechanisms for probing the data. Above the time series vi-

ualization, a time information bar shows the start and end time

nstants for the visible range, as well as the time instant that cor-

esponds to the mouse hover position. Below the visualization, a

alue information bar shows both the value and moving range

hen the mouse hovers over a data item. The user can click on

he value information bar to pin a value marker, which causes it

o persist in the display for comparative purposes (see Fig. 5 ). The

ser may also drag a time range in the detail time series visual-

zation. The selected time range is indicated by a rectangle with a

ellow halo. It is also linked to the selection details pane, which is

escribed in Section 5.4 . The range selection can be translated and

emoved using mouse-based gestures. 

The detail time series visualization offers four different modes

or displaying the data items (see Fig. 8 ). The point mode sim-

ly represents each data item as an unfilled circle. In the line

ode, the data items are shown as points that are connected with

traight line segments based on the temporal sequence. With the

tepped line plot, the value is assumed to remain constant until

he time instant of the next value, which results in a horizontal
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Fig. 8. The detail time series visualization can be configured to represent the data 

in one of four modes: point, line, stepped line, or spectrum. In addition to showing 

the data values, each mode can show the moving range values. 
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ine segment between data points. When the next value is reached,

 vertical line segment is drawn to connect the new value to the

orizontal line segment of the previous value. This rendering op-

ion produces a stepped line configuration, which is the preferred

epresentation for most sensor readings in the 3D printer logs. 

The final representation option for the detail time series vi-

ualization is the spectrum mode (see Fig. 8 ). This mode is sim-

lar to a bar chart, except the bar is centered on the zero line,

hich passes through the middle of the y -axis. To indicate the

ign, the bars are shaded differently for positive and negative val-

es using user-defined colors. Inspired by audio spectrum plots,

he spectrum mode emphasizes the magnitude of the values and

he change between successive values in a more visually salient

anner. Whereas a bar chart splits negative and positive values

cross the zero line, the spectrum plot keeps the values on the

ame plane for easier visual comparisons while preserving the sign

ith color encoding. 

In addition to the data values, the detail time series visual-

zation can optionally represent the moving ranges for the data

alues. Inspired by the process behavior chart introduced by

heeler [43] , the moving ranges are the differences between suc-

essive values and are used to measure routine variation. The user

an choose to replace the data value with the moving ranges in the

isualization or the moving ranges can be encoded in the opacity

f the glyph (point, line, bar) representing the data value. When

apped to opacity, the smallest and largest range changes are

apped to the most and least transparent shadings, respectively.

s shown in Figs. 14 and 8 , mapping the moving range to the bar

pacity in the spectrum plot mode enhances visual change detec-

ion. This approach emphasizes temporal variations while preserv-

ng the representations of individual values. The visualization can

lso be configured to not show the moving ranges. 

As shown in Fig. 5 , contextual information is preserved in the

verview visualization by linking the scroll actions in the detail

isualization to highlight the visible range with two black bars

hat surround the visualization. Coupled with the overview visual-

zations, the detailed time series visualization allows fine-grained,

ulti-scale data exploration while maintaining an awareness of

emporal context in the whole data set. 
.4. Selection details panel 

Located to the right of the variable visualization panel (see

ig. 4 ), the selection details panel shows statistical information for

elections made in the detail visualization panel. This panel ad-

resses the detailed statistical analysis requirements from R3 (see

ection 4.3.1 ). When a time range selection is created, a selection

etails pane is added. The panes are stacked vertically with the

ost recent selection appearing at the bottom. To highlight the

ink between selections in the details panel and time series visual-

zations, clicking on a selection’s name or time range in the details

anel centers and highlights the selection range in the time series

iew, and hovering over a selection in the time series view high-

ights the corresponding selection visualization in the selection de-

ails panel using a color halo. 

Each selection pane includes a statistical visualization similar to

he one used in the overview region of the variable visualization

anel (see Section 5.3.1 ). Reconfiguration of the pane layout and

xporting of data associated with a selection can be accomplished

ia the button panel at right. The user can also adjust the x and y

xis limits to normalize comparisons between selections. In Fig. 4 ,

hree selections are set in the BeamCurrent variable visualization

ane. From left to right, the selections correspond to panes shown

n the selection details panel from top to bottom. As the range se-

ections are translated in the detail time series visualization, the

orresponding selection pane visualizations are updated automati-

ally. The selections provide the user with a lens for detailed com-

arisons. 

.5. Waterfall visualization 

Shown in a separate window (see Fig. 4 ), the waterfall visual-

zation provides both an overview and a detailed view of variable

alue changes for segments of the full time series. This visualiza-

ion addresses both R1 (see Section 4.1.1 ) and R2 (see Section 4.2.1 )

esign requirements. The waterfall visualization is constructed by

artitioning the full time series into smaller segments, which rep-

esent build layers, using the build height variable (see Fig. 9 ).

hen a new build height value is recorded, the system begins

rinting a new layer. 

As shown in Fig. 10 , each layer is rendered as a color-shaded

ertical line. Whereas a conventional time series line plot maps

ata values to the y axis, the waterfall visualization employs a

olor scale, which is mapped to the full range of values, to encode

alue changes on the line. The resulting vertical line condenses

he layer information into a miniature form. Like the stepped line

rawing mode for time series described in Section 5.3.2 , a step en-

oding is used to color the line where the color representing the

ata value remains constant until a new value is encountered. An

lternative approach is to interpolate between data values to pro-

uce a color gradient, however the step encoding is more appro-

riate for this application due to the sampling process of the 3D

rinter system. 

As shown in Fig. 9 , layer lines are rendered by aligning the

tart of each line along the top of the visualization. The layer start

ime is also mapped to the x position of the vertical line in a de-

cending chronological layout from left to right. Layer segments are

haded using a semi-transparent color, which reveals portions of

he build with shorter layer build times and more layers. That is,

hen the width of the window compresses the x axis time scale

nd causes layers with short durations to overplot one another, the

emi-transparent shading will reveal the density of lines. 

The waterfall visualization provides an important component

or understanding layer patterns at different scales. It provides

oth an overview of the entire build and details about individual

tages within each build layer using an approach reminiscent of
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Fig. 9. The waterfall visualization shows a segmented overview of an entire time series using detailed micrographics. Each vertical line represents a build layer from a 3D 

print. The layer start time determines the x location of the line. The line length shows the time required to print the layer. Values are encoded in the color of the line 

segments using the color scale shown below and a step encoding. In this figure, three layers with significantly longer durations are visible as well as subtle variations in the 

print process near the middle of the build. 

Fig. 10. Each vertical line in the waterfall visualization encodes data values for a 

particular variable during a build layer. Instead of using distance offsets on the x or 

y axis like conventional time series plots, the values are encoded using color based 

on a color scale that covers the min/max value range. 
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2 Falcon currently uses Dave Moten’s FastDTW implementation available online 

at https://github.com/davidmoten/fastdtw 
the micro/macro readings described by Tufte [15] . Therefore, both

broad trends and details are displayed together and researchers

gain a unique perspective of a build. 

5.6. Segmented time series visualization 

The segmented time series visualization (see Fig. 11 ) is also

displayed in a separate window accessible through the main Fal-

con user interface. Similar to the waterfall visualization, the seg-

mented visualization partitions the full time series for a variable

into multiple time series plots for detailed comparative analysis.

This detailed view addresses R2 (see Section 4.2.1 ) and R4 (see

Section 4.4.1 ) design requirements. Although this visualization al-

lows the user to specify the segmenting variable, the build height

variable is usually used in 3D printer data analysis. As shown

in Fig. 11 , the segmented view consists of three main visualiza-

tion panes: the segmented time series pane (left), the similar-

ity/dissimilarity indicator pane (middle), and the image view pane

(right). 

5.6.1. Comparative visual analysis and information scent 

The time series visualization panel stacks the segmented time

series plots vertically from the top to the bottom of the build in

a scrollable view (see Fig. 11 ). The numerical labels shown to the

left of the time series indicate the segment build heights. To se-

lect a reference segment, the user clicks on its label (see Fig. 12 ).

Then, the time series for the reference segment is drawn beneath

the other segments’ time series plots using a light gray color to

support comparative visual analysis, which addresses requirements

mentioned in R4 (see Section 4.4.1 ). 

When a reference segment is selected, it is also compared nu-

merically to the other segments using an implementation of the
ynamic time warping (DTW) algorithm [44] . The DTW technique

nds the optimal alignment between two times series by stretch-

ng or shrinking one time series. This warping is then used to

etermine the similarity between the two time series yielding a

istance metric. Because the original DTW technique has O(n 4 )

ime and space complexity, we use a Java-based implementation

f FastDTW 

2 . FastDTW is an approximation of DTW that has lin-

ar time and space complexity. Falcon applies the FastDTW tech-

ique to each pairwise combination of the reference with the other

egments. For each segment, the distance value is normalized and

nverted (to emphasize the smaller more similar values) yielding

 similarity metric that is visually encoded in the width of a bar

isplayed below each segment label. The more filled the bar, the

ore similar the segment is to the reference segment. For exam-

le, in Fig. 11 , the segment at height 20.00 mm is most similar to

he reference height of 102.5 mm. 

The middle similarity/dissimilarity indicator panel visually en-

odes the FastDTW distance values for all segments to guide the

ser to similar or dissimilar segments over the entire build. As

hown in Fig. 12 , the graphical indicators are arranged vertically

nd correspond to the layout of the time series segment pane.

ince the height of the window typically prevents displaying all

egment indicators individually, a binning algorithm groups neigh-

oring segments to fit the available display space. Then, each bin is

ummarized by finding the largest and smallest FastDTW distance

alues and normalizing the values. The largest distance value is vi-

ually encoded with the red dissimilarity bar. The smallest distance

alue of the bin is inverted (to emphasize the smaller more sim-

lar values) and visually encoded with a blue similarity bar. The

isual encoding uses both the width and color saturation to repre-

ent the distance values whereby wider and more saturated bars

enote bins that are either more similar (blue bars) or dissimilar

red bars). 

The resulting array of binned distance indicators, which are

ligned with the time series panel scroll bar, provide information

cent [2] in the context of the entire build. This scent guides the

ser to layers of interest, relative to the reference layer, without

equiring manual scrolling and visual inspection of each individ-

al time series segment. This method for providing information

cent addresses the interactive feedback requirements from R1 (see

ection 4.1.1 ). The user can hover the mouse over individual indica-

or bars to see the distance values as tooltips, and click on the bars

o center the left time series panel on the appropriate segments. 

https://github.com/davidmoten/fastdtw


C.A. Steed et al. / Computers & Graphics 63 (2017) 50–64 59 

Fig. 11. The segmented time series view partitions the full time series for a variable of interest into multiple time series plots using a user-defined segmenting variable. 

Here the segmenting variable is the layer build height. The view consists of three main visualization panes: the segmented time series pane (left), the similarity/dissimilarity 

pane (middle), and the image view pane (right). 

Fig. 12. When a build layer segment is selected in the segmented time series visu- 

alization, the layer is used as a reference height. The time series plot for the refer- 

ence height is then rendered below the other time series plots for comparison. Also, 

similarity/dissimilarity with the reference height is visually encoded in the binned 

distance indicators. Here the black outlines indicate those bins whose time series 

plots are visible in the time series plot panel at right. 
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.6.2. Near IR imagery panel 

The rightmost imagery panel shows the near IR images for each

uild layer in a scrollable view similar to the time series visual-

zation panel. The user can change the image scale by adjusting

he panel bounds. To maintain a consistent view, scrolling in all of

he panels can be synchronized. The image view provides a differ-

nt perspective for visually examining build quality and identifying

efects such as porosity, swelling, and temperature variation in a

ayer. In the future, the image panel will be augmented with infor-

ation from computer vision algorithms to highlight porosity, hot

pots, and other potential problems. Currently, these problems are

etected manually through visual inspection by the user. 
. Case study: analyzing 3D printer build data 

In this section, a case study of Falcon is presented to demon-

trate its practical capacity to reveal multivariate patterns at mul-

iple scales in complex time series data. By documenting the ex-

loration and discovery of significant patterns from an actual build

y an additive manufacturing researcher, who is also a co-designer

f Falcon and co-author of this paper, this case study validates the

ffectiveness of Falcon. The effectiveness of Falcon is further cor-

oborated by the fact that these experts have adopted the system

s their primary tool for daily analysis work at the ORNL MDF. 

A photograph of a typical analysis scenario is shown in Fig. 1 .

he geometrical configuration of this test, which is shown in Fig. 2 ,

s designed to ensure that the Arcam Q10 system is functioning

roperly by printing a structure that is created entirely from the

uild platform without support structures. This configuration in-

ludes four distinct geometrical layouts as well as five specific fea-

ures. The features include 4 − 104 × 104 × 15 mm blocks, 58 −
05 × 15 mm cylinders, 5 − 15 mm cubes, 1 − 15 × 30 × 5 mm

lock, and 1 − 30 × 15 mm cylinder. The data generated from a

uild of this test configuration is the subject of the analysis that is

escribed in the remainder of this section. We present the analy-

is session as a narrative that is told from the perspective of the

dditive manufacturing researcher. 

.1. Overview first 

We begin the analysis session by loading the printer data (a

og file and near IR images) into Falcon and creating an overview

f the entire build for the set of key variables. Based on experi-

nce acquired through the analysis of other builds and background

nowledge of additive manufacturing, we have determined that
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Fig. 13. We begin analysis of the 3D printer log by visually inspecting overview visualizations for a set of key variables. Here we show only four of the key variables due to 

space restrictions, but a typical session would involve dozens. The three outliers in the LastLayerTime visualization and a spike in the BottomTemperature visualization require 

further investigation as they may indicate problems in the build. 
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these variables are prime indicators of the overall quality of the

build. Although this case study focuses on a few variables from this

limited set due to space restrictions, it is important to note that

many other variables are studied during a normal analysis session.

As shown in Fig. 13 , we construct the visual overview by adjust-

ing the parameters to show the entire time series in the detail time

series visualization for each variable. In this case, the overview is

created by setting the Plot Chrono Unit to hours and the Plot Unit

Width to 30 pixels, which yields a 2-minute resolution. The figure

shows four from the full set of key variables, but a typical analysis

session may include dozens of variables from multiple files. 

6.1.1. Build height analysis 

In Fig. 13 , the top variable visualization panel shows the Cur-

rentZLevel variable, which indicates the height in mm from the bot-

tom layer. We recognize the steady increase in value for this vari-

able over the duration of the build as an artifact of the manner

by which the system prints from bottom to top of the model. The

mouse hover query on the CurrentZLevel detail time series visual-

ization shows that the height is 55.8 mm at 9:15:40 and the mov-

ing range is approximately 0.05 mm, which is the expected layer

thickness. At this coarse view, it appears that the build height plot

is consistent with a normal build. 

6.1.2. Bottom temperature analysis 

Our eye is drawn next to the third variable panel, which shows

the BottomTemperature variable. This variable indicates the tem-

perature at the base plate, which should steadily decrease after

the build initialization phase as the print layer height increases.

In the detail time series visualization, we note a sharp increase in

temperature near the middle of the build process (see the second

pinned value of 532 °C in Fig. 13 ). This abnormal pattern warrants

further investigation as it may indicate a change in processing pa-

rameters due to the build geometry. 

6.1.3. System rake analysis 

As shown in Fig. 14 , we change to the spectrum time series

plot mode to check the printer rake sensor readings. These sen-

sors measure the consistency of the powder bed by raking powder

over the sensor flaps and recording the time that they are open.

Since a consistent powder bed is vital to an optimal melt process,
he gaps and value spikes that appear in the highlighted ranges of

his visualization are troubling. The spectrum visualization excels

t revealing patterns of this nature. In addition to prompting us to

nspect the consistency of the printed object, we are compelled to

hysically inspect the powder (e.g., distribution and chemical com-

osition) and rake blade (e.g., bends, cracks, or holes) mechanisms

ithin the printer. 

.1.4. Layer build time analysis 

Turning our attention back to Fig. 13 , we study the second vari-

ble pane, which shows the LastLayerTime variable. This variable is

irectly related to each layer’s melt area as more time is required

o melt a larger area, and vice versa. From this view, we identify

nd highlight four distinct stages of the overall print process for

he test configuration using the time range selection tool (see the

ellow rectangular highlights in Fig. 13 ). These stages correspond

o four regions of the melt area for the build starting with the

argest per layer melt area at the bottom and progressing to the

mallest at the top. 

In the bottom region (see the far left selection that corresponds

o the top statistical selection view at right), the build layers re-

uire the most melt time per layer (between 60 and 74 sec). In

he next selected region (see the second selection from the left

nd second statistical selection view from the top at right), the

uild layers require less melt area and exhibit a more normally dis-

ributed range of melt times (between 53 and 60 sec). The smaller

ispersion of values and apparent lack of significant outliers in this

egion (see the statistical summary histogram) increases our con-

dence in the quality. Jumping ahead in the build time series, we

ote that the fourth region (see the far right selection and bottom

tatistical selection view at right) is also characterized by relatively

mall deviations in layer build times and requires the least amount

f time to complete (approximately 13 min). 

We now turn our attention to the third selection range in the

astLayerTime detail time series visualization (see the third selec-

ion from the left and the third statistical selection view from the

op in Fig. 13 ). We observe three outliers occurring near the be-

inning, middle, and end of this range, the largest of these being

pproximately 91.3 sec (see the max value shown in the statistical

iew). These outliers skew the histogram plot, which reduces the

erceivable structure of values within the range of normal layer
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Fig. 14. We use the spectrum time series plot mode to analyze four rake sensors over the entire build. In a normal build, these plots should show a minimal variation 

without large gaps. Here the gaps and spikes that appear may indicate problems with the powder bed consistency or rake blade. The spectrum plot mode excels at revealing 

such conditions. 
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imes. As shown in Fig. 13 , we set a pinned value marker on the

ast outlier showing the value is about 90 sec. These aberrations

uggest that something occurred in the preceding layer to cause

 significantly longer time for its completion, which may indicate

roblems in the build. Therefore, we must investigate the corre-

ponding layers in more detail. 

.2. A more focused overview 

We create a more focused overview using a waterfall visual-

zation of the BeamCurrent variable (see Fig. 9 ). As described in

ection 5.5 , the waterfall visualization is constructed by segment-

ng the variable time series into individual layers using the build

eight variable. Again we see the four distinct regions that char-

cterize the test pattern. Moreover, we immediately recognize the

hree outlier layers, as the vertical lines are significantly longer

han the others. In addition, we see more subtle variances that are

ifficult to see in the initial overview. We detect slight variances in

he initial preheat stages of the layers (see the slight shift in the

ength of the white segments at the top of each vertical line). We

lso see smaller variations in layer duration and the beam current

alues during the middle of the build. Specifically, seven build lay-

rs show some variation within the normal range. During a typical

nalysis session these variations would warrant deeper investiga-

ions, but, for the sake of brevity, we do not discuss them in the

urrent work. 

.3. Zoom and filter 

At this point, we have visually identified potential issues at spe-

ific times/heights in the build using overview visualizations. Next,
e increase the detail of the visualizations to conduct more thor-

ugh analysis of the abnormal build layers. In the detail time se-

ies visualization, we increase the level-of-detail by setting the Plot

hrono Unit to seconds with a Plot Unit Width of two pixels. Fig. 15

hows the resulting view after scrolling to the time range asso-

iated with the third outlier, which is indicated in Fig. 13 by the

ightmost pinned value marker of approximately 90 sec. 

In Fig. 15 , the black context bars, which halo the overview time

eries plot for each variable, show the relative position of the vis-

ble time range in the detail time series visualization. In the Last-

ayerTime detail time series visualization, we highlight the outlier

sing a time range selection. We use the mouse hover query to

onfirm that the preceding layer print time value is approximately

0 sec, which is approximately 38 sec more than the previous

eading of approximately 51.9 sec (see the pinned marker value

o the left of the mouse selection range in the detail time series

isualization). 

Since LastLayerTime values describe the previous layer, we

lance back one layer on the other three variable plots shown in

ig. 15 . In the detail time series visualization for the CurrentZLevel

ariable, we notice the longer time gap between z -level changes

see the highlighted range in the top variable plot). We pin a value

arker on this plot to show that the outlier layer occurs at a

eight of approximately 102.5 mm from the bottom layer. Like-

ise, we see that the outlier layer is also visible in the wider gap

etween the Rake.CurrentPosition variable readings (see the high-

ighted range in the bottom variable plot). This variable captures

he position of the rake (a mechanism that moves metal powder

cross the platform before the melting process) relative to the cen-

er of the build. The normal rake pattern is visible in the detail

ime series visualization—the rake traverses three times from one
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Fig. 15. We zoom into the detail time series visualization by changing the time scale settings to investigate one of the outliers detected in the overview visualization. We 

see a repeat pattern in the BeamCurrent detail visualization that is caused by a system arc trip. The arc trip may indicate problems in the microstructure of the printed 

objects. Falcon helps find such issues and precisely locate regions of the printed object that may be affected. 
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side to the other depositing and smoothing the powder over the

print area as it moves. 

The most telling discovery is found in the BeamCurrent detail

time series visualization. In Fig. 15 , we highlight the time range for

the outlier layer using the time range selection. The normal Beam-

Current pattern can be observed in the other layers as it modulates

between different predictable levels during each of the five stages

the system goes through as it prints a layer. However, in the out-

lier layer, we see that the pattern is repeated, which narrows down

the cause of the outlier. We look at the last peak of the first five

stage pattern where the process seems to stop and restart the print

pattern. 

6.4. More detail, on demand 

To study the abnormal layers in more detail, we open the seg-

mented visualization panel as shown in Fig. 11 . We segment the

full BeamCurrent variable time series into smaller time series vi-

sualizations using the CurrentHeight variable. The resulting view

shows the individual time series visualizations for each build layer.

As shown in Fig. 12 , we set the outlier layer at 102.5 mm as the

reference segment by clicking on its time series. This action causes

the panel to render the time series for the reference segment as

an underlay, using a light gray color, on all the other time series

plots. The reference plot highlights the repeated print pattern. At

right of the time series panel scroll bar, the blue similarity indica-

tors reveal the locations of the other two outlier build layers. 

In Fig. 11 , we scroll to the bottom of the build near 20 mm,

where one of the other outliers appears. The 20 mm layer’s indi-

cator suggests that it is similar to the reference layer. In the time

series plot, we see the same repeated pattern although the refer-

ence signal (at 102.5 mm) is slightly shifted to the left. Despite the

slight shift, this evidence suggests that the outliers at 102.5 mm

and 20 mm are caused by the same condition. 

Finally, the right image panel shows a scrollable view of the

near IR images for each layer. This image panel is synchronized
ith the layer time series panel so that we see the image for the

ayer at 20 mm. This view aids in the discovery of microstructure

roblems such as porosity, hot spots, or swelling that may occur

uring the stages of each layer build. Together with microscope

mages (not shown), the image views help explain the issues that

re seen in the other visualizations and ascertain the quality of the

aterial. In this instance, we see no microstructure problems in

he image at layer 20 mm. 

.5. Understanding the cause of the outliers 

From experience, we know that such abnormal layer times are

sually caused by either an arc trip or a smoke detection event.

oth conditions cause us to question the build quality. When the

eam is shut down during the melting stage, which is the case

n this instance, the microstructure in that layer can be altered.

onsistent microstructure of the material is essential for creating

arts that are dependable. 

An arc trip occurs when the beam forces too much energy den-

ity through the filament. The system responds to the arc trip by

mmediately shutting off the beam and completely restarting the

ayer build process. In the time series visualization for the Beam-

urrent (see Fig. 15 ), an arc trip appears as a repeated signal of

he electron beam current as it progresses through the five layer

tages. 

The detection of radiation from ionized powder particles in the

icinity of the electron gun is characterized as a smoke event. This

ondition causes the powder to scatter, forming a dust cloud in

he build chamber, which can harm the beam filament. As with

he arc trip condition, a smoke detection event causes the beam to

hut off and the layer print is restarted, which also manifests in

he variable visualization as a repeated signal. 

By separately analyzing the smoke sensor readings, we deter-

ine that the outliers are caused by an arc trip. The bottom vari-

ble visualization pane in Fig. 13 shows the SmokeDetector.Counts

ariable. Except for a spike during the initialization phase, which
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s expected, the remainder of the detail time series visualization

hows normal variations. 

The ability to discover and thoroughly investigate such complex

atterns will help us formulate new algorithms to automatically

etect these and other conditions that impact the quality of the

rint—a critical capability for certifying the quality of 3D printed

bjects for applications where failures are not tolerable, such as

rinting aircraft parts. Additional study of this data is also helping

s fine tune the print parameters to avoid such conditions in future

uilds. Moreover, we have engaged in supplemental investigations

f this particular print to understand how changes in the melt pool

ffect microstructures. These investigations involve image process-

ng algorithms to detect porosity using the near IR imagery, view-

ng cross sections of the material through optical microscopes, and

sing a scanning electron microscope to view extremely fine res-

lution structure. Falcon helps researchers determine the defect

onditions and related sensor patterns, as well as the precise lo-

ation to physically examine the microstructure of the 3D printed

bjects. 

. Discussion 

Additive manufacturing researchers have formed an analy-

is workflow based on several months of experience using Fal-

on to analyze hundreds of builds. The workflow closely follows

he stages of Shneiderman’s visual information seeking mantra:

Overview first, zoom and filter, then details-on-demand” [1] . Al-

hough the design of Falcon may include some indirect guidance

o proceed from an overview to details during analysis, the re-

earchers have adopted this workflow based on their own inde-

endent explorations. The fact that they have naturally gravitated

o this strategy corroborates the notion that it is a favorable strat-

gy for designing new data visualization systems. 

The success of Falcon is largely attributed to the assembly of

n interdisciplinary team of motivated individuals each bringing a

pecific area of expertise to the project. Pictured in Fig. 1 , additive

anufacturing experts at the ORNL MDF push the limits of manu-

acturing technology to build 3D printed vehicles, complex aircraft

arts, and even sustainable houses. We employ a participatory de-

ign process where these experts are co-designers and the primary

sers of our tool, and we meet with them weekly to discuss new

evelopments, evaluate their use of the tools, and plan milestones.

New feature development often begins with the additive man-

facturing researchers expressing a challenging analysis task, ideas

or addressing the task, and expected outcomes. Next, the visual

nalytics researchers create mock-up sketches, which the team dis-

usses and refines. The sketches are transformed into prototype

olutions, which are field tested by the additive manufacturing re-

earchers. The team continues refining the resulting techniques un-

il a satisfactory solution is reached. 

We have sacrificed some generality in Falcon to implement fea-

ures that are specific to additive manufacturing, such as segmen-

ation according to build heights and porosity detection. Although

hese decisions make Falcon less compatible with all possible sce-

arios, it has enabled discoveries that would be far more difficult,

f not impossible, without them. That said, we have striven to mod-

larize such domain specific capabilities to permit future utiliza-

ion in fields that face similar challenges, such as cyber security

nd climate science. 

. Future work 

Since Falcon is an ongoing development, we have identified ar-

as for improvement to increase its effectiveness in additive manu-

acturing and other similar domains. Although Falcon supports the

bility to save the current display parameters to allow sharing and
estarting a previous analysis session, it lacks the ability to capture

rovenance information. We plan to incorporate provenance capa-

ilities by integrating existing frameworks, such as VisTrails [45] .

n addition to provenance, we plan to develop annotation capa-

ilities where notes persist with the data and are shareable with

ultiple users. 

Interactive similarity/dissimilarity methods for time series data

ave demonstrated a promising capability that we are currently

xpanding into an automated process. In particular, we are investi-

ating active learning techniques that automatically learn features

f interest by monitoring the user’s interaction. We are also incor-

orating computer vision algorithms to automatically detect and

ighlight porosity, swelling, and hot spots based on the near IR

magery. The integration of these and other machine learning algo-

ithms will help reduce the search space, recommend hidden fea-

ures in the data, and increase the overall efficiency of the analysis

rocess. 

We are integrating new visualization techniques into Falcon.

dditional multivariate visualizations, such as parallel coordi-

ates [46] , are under development. We are studying different vi-

ualization strategies for representing Boolean and categorical in-

ormation in time series visualizations. We also plan to investigate

ew focus + context techniques for time series visualizations to

revent perceptual issues related to the analysis of multiple sep-

rate views [36] . Another practical visualization feature that we

lan to develop is the capability to difference and integrate mul-

iple time series streams into a single view for more direct com-

arative analysis. 

. Conclusion 

In this paper, we present Falcon, a new system that follows a

isual analytics approach to improve knowledge discovery in long

nd complex time series data with practical applications to the

eld of additive manufacturing. Falcon leverages a human-centered

esign grounded in the visual information seeking strategy [1] . Fal-

on provides linked visualizations from both temporal and statisti-

al orientations with automated analytics to highlight interesting

eatures. In addition, Falcon offers intuitive mechanisms to access

ultiple levels-of-detail as necessary. 

From our informal evaluations of the applied use of Falcon in

dditive manufacturing, we have learned that non-visualization ex-

erts can be vital members of interdisciplinary design teams as

hey help design new capabilities that respond to their actual

eeds, and they quickly employ new visual analytics techniques in

reative ways to solve problems. The parallels between the analyti-

al goals in additive manufacturing and other domains suggest that

hese capabilities are broadly applicable to many domains as they

elp users develop and refine a more complete mental model of

omplicated and large-scale time series data. 
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