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Deep data analytics for genetic engineering of diatoms linking
genotype to phenotype via machine learning
Artem A. Trofimov1, Alison A. Pawlicki1, Nikolay Borodinov1, Shovon Mandal2, Teresa J. Mathews2, Mark Hildebrand3,
Maxim A. Ziatdinov1, Katherine A. Hausladen4, Paulina K. Urbanowicz4, Chad A. Steed4, Anton V. Ievlev1, Alex Belianinov1,
Joshua K. Michener 5, Rama Vasudevan1 and Olga S. Ovchinnikova 1

Genome engineering for materials synthesis is a promising avenue for manufacturing materials with unique properties under
ambient conditions. Biomineralization in diatoms, unicellular algae that use silica to construct micron-scale cell walls with nanoscale
features, is an attractive candidate for functional synthesis of materials for applications including photonics, sensing, filtration, and
drug delivery. Therefore, controllably modifying diatom structure through targeted genetic modifications for these applications is a
very promising field. In this work, we used gene knockdown in Thalassiosira pseudonana diatoms to create modified strains with
changes to structural morphology and linked genotype to phenotype using supervised machine learning. An artificial neural
network (NN) was developed to distinguish wild and modified diatoms based on the SEM images of frustules exhibiting phenotypic
changes caused by a specific protein (Thaps3_21880), resulting in 94% detection accuracy. Class activation maps visualized physical
changes that allowed the NNs to separate diatom strains, subsequently establishing a specific gene that controls pores. A further
NN was created to batch process image data, automatically recognize pores, and extract pore-related parameters. Class
interrelationship of the extracted paraments was visualized using a multivariate data visualization tool, called CrossVis, and allowed
to directly link changes in morphological diatom phenotype of pore size and distribution with changes in the genotype.
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INTRODUCTION
Living organisms can construct complex three-dimensional
structures from inorganic materials at ambient temperature,
pressure, and pH in aqueous conditions, yet the complexity and
precision of this synthesis rival modern industrial methods.
Understanding and exploiting biomineral formation processes
will enable the design of next-generation materials for photo-
nics,1,2 sensing,3–5 filtration, and drug delivery.6 One of the best-
studied examples of biomineralization is in diatoms, unicellular
algae that use silica to construct micron-scale cell walls with
nanoscale features, yielding a multiscalar structure ranging over
eight orders of magnitude.7 A model diatom, Thalassiosira
pseudonana, like all diatoms, has a cylindrical cell wall—a frustule
made from silica. The top and bottom of the cylinder, termed
valves, are connected by a series of circular girdle bands. Within
each valve there is an array of ribs, pores, and rimoportulae (Fig.
1). Altogether the diatom morphology is a complex, functional
three-dimensional agglomeration of nanosacle to microscale
structures exceeding the complexity possible with current
synthetic approaches.8,9

The pores in diatom valves are of particular importance for both
diatom survival in the environment, as well as potential industrial
applications. The porous architecture of their exoskeleton enables
attractive optical properties, such as light harvesting, confinement,
and selective optical transmission.10,11 Moreover, despite high

porosity, diatom silica exhibits remarkably high mechanical
stability, which is important for filtration applications.12–14

Controllably changing the pores thus empowers an array of
properties, and in turn applications of diatom systems for a wide
variety of tasks.
Diatom frustules, including the pores, are assembled through

the concerted action of dozens of proteins encoded in the diatom
genome. These proteins modulate silica precipitation and sinter-
ing to generate specific structures. New techniques in multi-omic
characterization have identified many genes that may be involved
in biomineralization, based on coordinated expression during cell
growth and division.15,16 Validation of these predictions, however,
is challenging, requiring disrupting expression of each putative
frustule formation gene followed by identification of any resulting
changes in morphology. While in certain cases changes to
frustules may be obvious,17 often structure variation requires
more rigorous analysis. Specifically, the recognition of persistent
(but a priori unknown) features is a significant challenge. Further
complicating this is the fact that isogenic diatom populations have
substantial natural variation in morphological properties,18,19

which will render the task more difficult with regards to
generalization. Therefore, to controllably modify diatom frustule
structure through targeted genetic modifications, a robust
genotype to phenotype linking methodology needs to be
developed.
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One potential method that has been pivotal of late is the use of
artificial neural networks (NNs) that can learn abstract features
from large datasets, negating the need for hand-crafted features.
These deep NNs have been instrumental in the recent dramatic
improvement of automatic image classification and speech
recognition, and have also been applied to scientific domains,
such as fitting potential energy surfaces,20–23 fundamental
understating of phase transitions,24–26 processing of the atom-
ically resolved images27,28 as well as fitting multiparametric
empirical models.29–32 Classical image processing approaches
work, but data generation rates are replacing them with more
automated unsupervised and supervised learning methods.33

Artificial NNs, however, excel at classification problems and can be
very efficient. NNs employ a “learning by example” approach that
optimizes parameters by training on labeled data. Hence, if there
are systematic differences between classes, and the network has
presented those cases in the training sets, a NN can detect and
label features in real/validation data. Given that diatoms exhibit a
diverse set of frustule morphologies, a NN is a reasonable choice
of a classification scheme to detect the genotype to phenotype
translation.
In this work, we investigated wild type and genetically modified

T. pseudonana to capture the interplay between the changing
genotype and the expressed phenotype, as gene manipulation34

could enable these organisms to be used as a direct source of
specifically tailored nanostructured and microstructured materi-
als.35 We modified the genotype by knocking down genes we
suspected to be involved with frustule formation and character-
ized the phenotype by scanning electron microscopy (SEM). We
used image processing33,36 and machine learning classification
algorithms (artificial NNs)37,38 to screen for genes that affect
diatom phenotype and to distinguish diatoms with wild type and
modified morphologies. With regard to inspected Thaps3_21880
modification, we demonstrated a NN that can identify wild and
modified diatoms with 94% accuracy. To explain the apparent
efficiency of NN-based classification, class activation maps (CAMs)
were used to highlight the image regions used by the network.39

It was found that pores are the defining features separating wild-
type diatoms from one specific knockdown strain. We then
created a separate neural net to focus specifically on pores and to
extract their parameters. This automated feature extraction
process allowed us to correlate the genetic modification with
diatom morphology. Our approach identifies the changes in valve
structure that result from a given genetic modification, offering
biological insight into the biomineralization process.

RESULTS AND DISCUSSION
Gene modification and testing
We identified protein Thaps3_21880 as a potential frustule
biosynthetic enzyme based on structural features and coordinated

expression during silicization.16 To perturb gene expression in T.
pseudonana, we synthesized an antisense RNA containing the first
427 nucleotides of the associated gene and expressed this
construct from a heterologous plasmid. Two independent clonal
knockdown lines were selected for nourseothricin resistance, and
then confirmed by polymerase chain reaction (PCR) (Supplemen-
tary materials Fig. S1 and Methods section for details).40

Identification of morphological changes
A successful gene knockdown does not necessarily result in any
morphological change in the diatom frustule and, furthermore, in
those cases where the morphology is altered, the precise change
is difficult to predict. Therefore, a robust method is needed for
determining whether a population of diatoms has a variant
phenotype and, if so, the details of the variation. SEM was used to
visualize the surface morphology of the modified and nonmodi-
fied samples, and a typical wild-type diatom is depicted in Fig. 1b,
with the details of the structure highlighted in Fig. 1c (see
Supplementary materials, Figs. S3 and S4 for more examples of
wild diatoms and the example images of modified diatoms). The
images reveal a complex feature-rich structure making it difficult
for the untrained eye to separate the wild and the modified
diatoms, let alone quantify physical changes. Therefore, we used
image processing and machine learning strategies to automati-
cally classify wild and modified phenotypes directly from images.
Classical image processing techniques proved to be cumbersome
in trying to process multiple images since subtle contrast variation
required significant manual parameter adjustment and precluded
automation. We, therefore, decided to use a NN. Labeled training
sets of wild (labeled as zero) and modified (labeled as one) diatom
images were prepared in the following way. Each image was
spliced into subsets of 89 × 89-pixel frames. Each frame under-
went a series of geometric transformations, such as horizontal and
vertical mirroring, rotation, and change in contrast to expand the
training set. The NN architecture is shown in Fig. 2a (see Methods
section for details). The validation test for this NN showed 94%
class identification accuracy. We also justified the NN by only
training the net on images of wild diatoms and validated on the
separate set containing wild diatoms. As a result, the accuracy was
~50%, which was expected.
This NN allowed us to automatically screen for changes in

images between the modified and wild genotypes, and indirectly
screen genes that modify the structure of diatoms. However, NNs
are often thought of as a “black box” approach to solving a
problem—it is difficult to ascertain what features drive the NNs to
make decisions. To gain insights into what image aspects made a
significant contribution to classification, we modified this NN, as
described in Methods section, in order to peer into the layers
using CAMs. Figure 2b, c shows the same frame of the diatom
image, which corresponds to the modified class and was identified
by the NN. Figure 2b highlights the regions that trigger wild

Fig. 1 SEM analysis of wild type T. pseudonana diatom. a A 45° view of an individual diatom. Published under a Creative Commons Attribution
4.0 International License from ref. 47 Scale bar is 1 µm. b Top view of a diatom valve (scale bar is 1 µm) and (c) valve morphology (scale bar is
300 nm). b, c Two different examples of a diatom valve
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activation class (AC), while Fig. 2c emphasizes the regions that, for
the NN, indicate modified AC. As shown by the colorbar, a whiter
color corresponds to higher AC intensity. Figure 2d, e also displays
an identical frame of another diatom image, corresponding to the
wild class. CAMs revealed that the NN focuses on pores as one of
the main features to distinguish wild and modified diatoms (for
additional examples of CAMs for NN, please, see Fig. S2 in
Supplementary Materials). In this way, we identified a specific
gene connected to the changes in pores of diatoms.

Automatic recognition of relevant features and extraction of their
parameters
Identification of pores emphasizes the importance of pore-related
parameters. Thus, a new NN 2 was generated and trained to focus
on these image characteristics. First, pores were recognized in

several raw images of diatoms. As a result, matching pairs of the
original images and corresponding binary images containing only
pores were generated and used as a training set for NN 2. Similar
to previous NN, training images were cut into 46 × 46-pixel frames,
which underwent identical geometric and contrast treatment to
enlarge the training set. It was important to perform this image
segmentation before loading the frames into the neural net, as the
contrast variation within a given image often precluded the use of
typical filtering approaches. Each frame was processed by the NN
2 (the architecture is shown in Fig. 3a; see Methods section for
details), built in a way that its output would be a pixel-wise
classification map corresponding to the input image.
Figure 3b, c shows pixel-matching images, where Fig. 3b is an

original frame of a diatom image that is loaded into the NN 2, and
Fig. 3c is an output image of the NN 2. Obtained NN-processed

Fig. 2 a Schematic of an artificial NN to distinguish between wild and modified diatoms (NN 1); scale bar is 300 nm; b–e Class activation maps
explaining operation of NN 1. b, d Regions of the diatom images that trigger wild activation class (AC); c, e Show regions of corresponding
images that trigger modified AC. b–e Scale bar is 50 nm
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image matches with the raw image and closely resolves the
presented pores. Scanning across each image, the pores can be
determined, as shown in Fig. 3d, where the raw image is
overlapped with the contours of NN-identified pores (red circles).
Since the CAMs pointed to pores as the features NN 1 used to
separate wild and modified diatoms, we wanted to provide a
quantitative analysis of multiple pore-related parameters to
capture this change. Using NN-processed images, we extracted
the following parameters: density of pores, mean area of pores,
and the percentage of area occupied by the pores relative to the
total area of the valve captured in an image. Additionally, pore
area distribution was extracted and fitted with a Gaussian
distribution, which yielded two more parameters, Gaussian value
µ and Gaussian sigma ς, producing a total of five parameters. To
minimize the influence of outliers (such as small features that NN
could recognize as pores), threshold for pore size was set to be
larger than three pixels.

The values of four of these parameters were plotted against the
values of the fifth parameter (mean area of pores) to test if
different regions of the parameter space produce distinguishable
types of behavior (Fig. 4). Figure 4a reveals that the best
separation between wild and modified diatoms can be established
through density of pores against the mean area of pores. Figure
4b, c shows that the separation of these two classes of diatoms
can also be shown through the plots of expected Gaussian value
and Gaussian sigma as a function of mean area, respectively.
Finally, no significant difference between classes is observed in
relation to the ratio of pore area to total area parameter (Fig. 4d).
It is also helpful to plot the extracted parameters together to

visualize parameter intercorrelation. We explored class interrela-
tionship using a multivariate data visualization tool called CrossVis.
CrossVis represents an evolution of both the EDEN and MDX visual
analysis systems41,42 (see Methods section for details). For clarity,
the expected Gaussian value µ was removed since its values are
identical to the mean area of pores (Fig. 4b). Parameter values are

Fig. 3 a Schematic of an artificial NN to recognize pores of the diatoms (NN 2). b Frame of an original diatom image that is loaded into the NN
2. c Pixel-wise classification map of the NN 2 corresponding to raw image (b). d Result of the application of the NN 2 to the image of a diatom
(red circles are recognized pores); scale bar is 300 nm
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graphed as polylines in a parallel coordinate plot,43 and each
vertical axis represents one of the pore-related parameters, as
shown in Fig. 5. Parameters of modified diatoms are colored
orange, and parameters of wild diatoms are blue. Vertical columns

are arranged so the parameters showing better separation
between classes are on the left-hand side of the Type column,
and the parameters with lesser separation are on the right-hand
side. Certain statistics are graphically represented in the interior

Fig. 4 Multifactor analysis of pores. a Density of pores, b expected Gaussian value µ, c Gaussian sigma ς, and d percentage of area occupied by
the pores relative to the total area as functions of mean area of pores

Fig. 5 Class interrelationship visualization using CrossVis v.2.1.2. Parameters of modified diatoms are colored orange, and parameters of wild
diatoms have a blue color. Histogram bins show the distribution of each parameter, and they have a light grey color for modified diatoms, and
a dark gray color for wild diatoms
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boxes of each column. Namely, thin blue and orange stripes
within each column capture the mean-centered standard devia-
tion of a given parameter of wild and modified diatoms,
respectively. Similar to Fig. 4, this statistical display shows that
there is little separation between classes based on the ratio of the
pore area to total area and Gaussian sigma ς, but diatoms can be
clearly classified based on the mean area and density of pores. The
distribution of each parameter is also displayed along the vertical
axis as shaded histogram bins (light grey is for modified diatoms;
dark gray is for wild diatoms).
Figure 5 also facilitates a visual correlation between presented

parameters shown with blue and orange lines connecting
neighboring vertical axis. Namely, each line connects values of
the parameters extracted from the same diatom image. On the
one hand, some parameters, such as Gaussian sigma and the ratio
of pore area to total area, do not seem to show any correlation
between each other. On the other hand, looking at the links
between density of pores and mean area of pores, it is observed
that these two parameters are negatively correlated within each
diatom class (higher density corresponds to smaller mean area
and vice versa), and the links have opposite directions for wild and
modified diatoms. This behavior suggests that higher density of
pores in wild diatoms is compensated by the smaller area of these
pores, which is opposite to the trend shown by modified diatoms.
In turn, this trend explains why the ratio of pore area to total area
is very similar for both classes.
This pore-based multifactor analysis confirmed that, while there

is an overlap between parameters of wild and modified diatoms,
the proposed and investigated algorithm allowed for their
separation and established a correlation between realized gene
modification and alteration of frustule morphology. Moreover, it
was shown that the performed gene alteration mainly affects such
pore parameters as their area and density, increasing the former
and decreasing the latter, while keeping the ratio of pore area to
total area of frustule constant.
In this work, we have illustrated how machine learning can aid

in biomaterial research using diatoms. After gene knockdown in T.
pseudonana diatoms, supervised machine learning was success-
fully applied to screen for genes that altered the structure of the
diatoms and separate those with modified morphology. This
yielded a process where morphological changes were connected
to a specific gene alteration. In the case of Thaps3_21880
modification, one artificial NN was developed to distinguish wild
and modified diatoms based on the SEM images of frustules,
resulting in 94% accuracy. Then CAMs visualized physical changes
that allowed the NNs to separate diatom strains, subsequently
establishing a specific gene that controls pores. Another artificial
NN was created to process image data, automatically recognize
pores, and extract pore-related parameters. In turn, multifactor
analysis and visualization of these parameters emphasized the
alteration in density and area of pores. An important advantage of
the presented approach is that it allows for automated screening
of the genes that modify diatom morphology, and it enables
recognition and analysis of features, such as pores, whose changes
might be indistinguishable with the naked eye.

METHODS
Culture and growth conditions
T. pseudonana (CCMP1335) stock cultures were maintained in NEPC (North
East Pacific Culture) medium (http://www3.botany.ubc.ca/cccm/NEPCC/
esaw.html). The cultures were grown in a temperature controlled incubator
at 16 °C under a 14 h:10 h (light:dark) photoperiod at 100 μmol photon
m−2 s−1 of photosynthetically active radiation.

Genetic manipulations
An antisense construct containing the reverse complement of the first 427
nucleotides of Thaps3_21880 was synthesized de novo and cloned into

pMHL00940 immediately following the NAT coding sequence (GenScript,
Piscataway, NJ). This construct was transformed into T. pseudonana by
microparticle bombardment using a Bio-Rad Biolistic PDS-1000/He particle
delivery system, as described previously.40 Briefly, exponentially grown
cells were harvested and 1 × 108 cells were plated onto an NEPC agar plate
lacking antibiotics. A nuclear transformation was performed by bombard-
ing plasmid coated tungsten beads (1.1 μm diameter, Bio-Rad M-17) at
1100 lb/in2 under vacuum at a distance of 8 cm onto cells plated on the
agar plate. After bombardment, NEPC medium was added to plates, which
wasincubated under a 14 h:10 h (light:dark period) for 24 h. After 24 h, the
plasmid bombarded diatom cells were plated on NEPC bacto-agar plate
with 100 µL/mL of the antibiotic nourseothricin. The resistant colonies
were transferred into 24-well plates with 2ml of NEPC medium. To confirm
construct integration, cells from well plates were screened by PCR using
primers NAT_SeqF (5′-AAGGTGTTCCCCGACGACGAATC-3′) and
21880_SeqR (5′-TATGAGCATGTCTTTGCCACTCAGAC-3′), as described
previously.40

Sample preparation for SEM imaging
One milliliter of diatom culture (2 × 106 cells/ml) was collected by
centrifugation at 5000 rpm for 5min and rinsed once with deionized
water. The diatom frustules were cleaned with 1mL concentrated sulfuric
acid and boiled in a water bath for 10min. After cooling, we added 20mg
KNO3, then boiled again for 10min. Samples were then washed three
times with deionized water using centrifugation. The diatom frustules were
spotted on silicon wafer and air dried in hood for approximately 10 min.44

While these harsh cleaning methods may affect the fine structures of
diatom pores, they were necessary to remove residual organic matter and
allow clear imaging.

SEM imaging of diatoms
Dried diatoms on Si wafers were imaged with a Merlin Field Emission SEM
(Carl Zeiss, Oberkochen, Germany) operating at a base pressure of 2.8 ×
10−6 mbar. Images were acquired using an in-lens detector with an
accelerating voltage of 1 kV, probe current of 100 pA, cycle time of 14.4 s,
10 line averages, and resolution of 1024 × 768. Images were collected of
diatom valves with a 2–3 µm field of view, depending on the individual
size of the diatom, to capture the arrays of ribs and pores. Diatoms in
various orientations were observed with SEM and only those with valves
that were enact, unwrinkled, and approximately parallel to the Si wafer
were included in this study, such as in Fig. 1b, c.

Computational methods
A series of images of wild and modified diatoms, that were used as training
sets, were analyzed using Python 3.6 libraries, such as numpy, scipy,
matplotlib, opencv, and scikit-image.45 Conversion from pixels to
nanometers was based on image scale bar, which was programmed to
be automatically recognized by the Python code. Both artificial NNs were
created using Keras library46 with a TensorFlow backend in Python 3.6.

Training dataset for NN 1
We have selected 29 images of wild diatoms and 29 images of modified
ones. A random selection would first determine the type of the particular
image to be added into training set, then the specific image of that type
would be also randomly drawn. This ensures that the presence of both
types of diatoms is equal. Otherwise, the classifier becomes biased to
output the type numerically dominant in the dataset. Image augmentation
was done in the following manner. All the images were rescaled using
resize function from opencv to have the same pixel/nm value of 3. A 250 ×
250 px cutaways were randomly selected from a randomly selected image.
Vertical and horizontal mirroring were applied at random. The rotation of
the cutaway was done using opencv functions getRotationMatrix2D and
warpAffine. We have applied non-linear adjustment of contrast for the
training set to incorporate possible artifacts from SEM images. Two cases
with equal probabilities were created: e(a*I) and (1− e(−a*I)) where a is a
random value between 0 and 1 and I is the intensity in the pixel. The
resulting arrays were normalized to [0, 1]. We have intentionally avoided
rescaling as we expected that size of the pores may be characteristic to the
diatom type, while SEM contrast, rotation, and mirroring were expected to
be varying within the type.
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Artificial NN to distinguish between wild and modified diatoms
(NN 1)
NN 1 architecture, shown in Fig. 2a, consists of two convolutional layers
with a max pooling layer in between, and then a dense (fully connected)
layer. The max pooling layer was added to increase the “connectedness” of
the convolutional filters. Rectified linear units (ReLUs) were used as
activation functions in these layers. The last layer consists of a two-unit
dense layer with softmax activation, so that the classification outputs
would sum to one, respecting the choices available. It is this layer that
provides the estimate of which class the input image belongs. Optimiza-
tion of the network was performed with the Adam optimizer utilizing the
cross-entropy metric, and NN was trained on a randomly selected subset of
images, where 80% were a training set, and 20% were a validation set. The
validation test, which predicts the class of the labeled images, showed that
NN can determine the class of the diatom with 94% accuracy.
The performance of created neural net (NN 1) was additionally validated

to confirm that the NN differentiates between wild and modified diatoms
based on actual patterns in the morphology and not based on noise or
artifacts. We took only images of wild diatoms, randomly split them into
two training sets with different labels, and retrained NN 1. Because both
sets consist only of images of wild diatoms, NN should not be able to learn
from these training sets and separate them if it works properly. As a result,
accuracy of the training was ca. 50%, which was expected and validated
the performance of NN 1.

Modification of NN 1 to obtain CAMs
CAMs allowed determination of the image regions used by NN 1 to
distinguish between wild type and modified diatoms. However, in order to
apply the concept of CAMs, next-to-last layer of NN 1 had to be changed
from dense layer to global average pooling layer. This modification did not
affect the accuracy of NN 1, but allowed to peer within the layers of the NN
and extract CAMs.

Artificial NN to recognize pores of the diatoms (NN 2)
NN 2 architecture, shown in Fig. 3a, consists of a convolutional layer with a
max pooling layer, followed by two convolutional layers, and an up-
sampling layer. An up-sampling layer was added to bring the output image
to a higher resolution that would match the resolution of the input image.
ReLUs were used as activation functions in these layers. The raw images
were normalized to [0, 1], and the thresholding value of 0.5 was used to
generate binary images for the NN 2. The last layer consisted of a
convolutional layer with only one filter and a sigmoid activation, so that its
output would be a pixel-wise classification map corresponding to the
input image.

Data visualization
Class interrelationship between diatom parameters was inspected using a
multivariate data visualization tool called CrossVis. The CrossVis system is a
visual analytics system, which combines interactive data visualization and
statistical analytics techniques. The system represents an evolution of both
the EDEN41 and MDX42 systems. CrossVis includes a number of
enhancements to the popular parallel coordinate information visualization
technique.43 As shown in Fig. 6, the parallel coordinates plot yields a two-

dimensional plot of multivariate data by representing each N-dimensional
tuple with points on N parallel axes, which are joined with a polyline.
CrossVis extends the basic parallel coordinates plot with human directed
interactions and graphical representations of summary statistics. Users can
select parameter ranges of interest by using the mouse to drag a
rectangular region on the vertical axes. As shown in Fig. 5, within the
interior of each vertical axis, the mean and mean-centered standard
deviation range (95% confidence interval) are shown, where the
rectangular box is the range and the horizontal line intersecting the box
is the mean value. Correlations between parameters (vertical axes) are
apparent when two axes are side-by-side. If the polylines cross to form an
X-shaped pattern, the two parameters are negatively correlated—as one
parameter increases in value the other decreases (see the polyline
crossings for the two leftmost axes in Fig. 5). If the polylines have few
crossings, the two parameters are positively correlated—as one parameter
increases in value, the other also increases. CrossVis also allows categorical
parameters (see the middle Type axis in Fig. 5) to be represented, which is
an extension of the standard parallel coordinate plot. The display of
categorical parameters enables study of the wild vs. modified classes in the
current work. Users can select a class by clicking on the appropriate box for
the categorical axis. For more details on the parallel coordinate-based
techniques, the reader is urged to consult the related references.41–43
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