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1 Introduction

One of the most challenging tasks in multivariate data analysis is to identify and quantify the as-
sociations among sets of interrelated variables. In real-world climate studies, this task is even more
daunting due to the uncertainty and complexity of dynamic, environmental data sets. Notwithstanding
the difficulty, the variability and destructiveness of recent hurricane seasons has invigorated efforts by
weather scientists to identify environmental variables that have the greatest impact on the intensity
and frequency of seasonal hurricane activity. In general, the goal of such efforts is to improve the
accuracy of seasonal forecasts which should, in turn, improve preparedness and reduce the impact of
these devastating natural disasters.

One particularly useful method for predicting seasonal hurricane variability is based on the idea that
there are predictors of the main dynamic parameters that affect storm activity, which can be observed
up to a year in advance. Using historical data, the importance of these parameters is estimated
using statistical regression techniques similar to those described by Vitart [1]. Although sometimes
complicated to establish, these techniques provide an ordered list of the most important predictors for
the dynamic parameters. Scientists gain additional insight in these studies by evaluating descriptive
statistics and performing correlation analyses.

In conjunction with statistical analysis, researchers have relied on simple scatter plots and his-
tograms which require several separate plots or layered plots to analyze multiple variables. Using
separate plots, however, is not an optimal approach in this type of analysis due to perceptual issues
such as change blindness (a phenomenon described by Rensink [2]), especially when searching for com-
binations of conditions. Although layered plots condense the information into a single display, there
are issues due to occlusion and interference as demonstrated by Healey et al. [3]. Furthermore, the
geographically-encoded data used in climate studies are usually displayed in the context of a geographi-
cal map; although certain important patterns (those directly related to geographic position) may be rec-
ognized in this context, additional information may be discovered more rapidly using non-geographical
information visualization techniques. What’s more, few multivariate visualization techniques provide
access to integrated, automatic statistical analysis techniques commonly used in climate studies to
identify significant associations. To compensate for these deficiencies, new visualization methods are
needed that intelligently integrate statistical processes and accommodate the simultaneous display of
real-world, multivariate data.

This paper discusses the extension and application of a popular multivariate information visualiza-
tion technique, the parallel coordinate plot (PCP), to a hurricane climate study. The resulting system
(see Fig. 1) provides a comprehensive environment for multivariate analysis by combining several inno-
vative extensions to the classical PCP with automated statistical analyses. This paper also describes a
systematic workflow for exploring environmental data with this system and concludes with a case study
in which the system concepts are evaluated via climate analysis of seasonal intense hurricane activity.
The results of this practical evaluation suggest that PCPs can be used in conjunction with statistical
processes to more efficiently conduct real-world, multivariate data analysis on complex environmental
data sets. Furthermore, this research effort fulfills the NIH/NSF Visualization Challenges Report rec-
ommendation that visualization researchers “collaborate closely with domain experts who have driving
tasks in data-rich fields to produce tools and techniques that solve clear real-world needs [5]” through
the inclusion of a hurricane expert throughout the design and evaluation of the system.

1

_______________
Manuscript approved June 16, 2008. 



Figure 1: The visualization system developed in this research is composed of a settings panel (upper left), paral-
lel coordinates plot (upper right), and table view panel (lower). The statistical indicators, correlation/regression
indicators, dynamic query, and discrete aerial perspective line shading features are illustrated on the ASA cars
data set [4]. System examples with hurricane trend data are shown in the remainder of this paper.

2 Related Work

The parallel coordinates visualization technique was first introduced by Inselberg [6, 7] to represent
hyper-dimensional geometries. Later, Wegman [8] applied the technique to the analysis of multivariate
relationships in data. Since then, several innovative extensions to the technique have been described
in the visualization research literature.

The system described in this paper implements a histogram display, dynamic axis re-ordering ca-
pability, axis inversion, and some details-on-demand features similar to those described by Hauser et
al. [9]. In addition, some interaction capabilities described by Siirtola [10] (e.g., conjunctive queries)
are included, as well as a variant of the interactive aerial perspective shading technique described by
Jankun-Kelly and Waters [11]. The system also includes a focus+context technique for axis scaling
that is similar to the capabilities described by Fua et al. [12], Artero et al. [13], Johansson et al. [14],
and Novotńy and Hauser [15]. More recently, the coupling of PCP, scatterplots, and correlation compu-
tations described by Qu et al. [16] inspired the correlation analysis capabilities in the system described
in this paper.

The system also provides dynamic query capabilities based on the double slider concept of Ahlberg
and Shneiderman [17]. The PCP axes display important frequency information between the double
sliders in a manner similar to the Influence Explorer described by Tweedie [18].

The visualization system described in this paper provides a unique PCP-based interface by fusing
variants of the above-mentioned interaction techniques. Another novel contribution from this work
is the coupling of this system with statistical indicators and automated analyses. is another novel
contribution from this work. This research also describes one of the most in-depth validations of
enhanced PCPs in the weather science domain.
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Multiple regression traditionally has been used to identify statistically significant variables from
multivariate data sets, including tropical cyclone data sets. Klotzbach et al. [19] used this technique to
determine the most important variables for predicting the frequency of North Atlantic tropical cyclone
activity. Similarly, Fitzpatrick [20] applied stepwise regression analysis to the prediction of tropical
cyclone intensity. It will be shown that multiple regression and interactive PCPs can compliment each
other, with the regression identifying the relevant associations and the PCPs highlighting additional
features of the variables.

3 System Overview

This research has resulted in the development of an innovative visualization system that combines
interactive PCP techniques with automated statistical processes to provide a practical tool for analyzing
multivariate data sets. The system was developed using the Java Development Kit (JDK) version 1.5;
and it yields interactive performance on a laptop computer with a 2.33 GHz Intel Core 2 Duo processor,
3 GB Random Access Memory (RAM), and an ATI Radeon X1600 graphics card with 256 MB Video
RAM.

As shown in Fig. 1, the system provides an efficient graphical user interface (GUI) that offers a
settings panel (upper left panel), an interactive table view of axis settings and statistics (lower panel),
and an enhanced PCP view (upper right panel). Although the table and settings panels are important
for the usability of the system, the PCP panel is the heart of the system’s visual analysis capabilities.
In this panel, the classical PCP method is extended with dynamic interaction capabilities that provide
access to the data behind the visualization. The PCP view is dynamically linked with statistical
indicators and automatic statistical processes to provide an ideal environment for exploratory data
analysis. In the remainder of this section, the principal visualization and statistical analysis capabilities
of the system are described.

3.1 Visualization Capabilities

The visualization capabilities of the system are contained in the PCP panel. In addition to many fun-
damental PCP capabilities such as relocatable axes, axis inversion, and details-on-demand, this panel
provides several innovative and intuitive interaction capabilities such as axis scaling (focus+context),
aerial perspective shading, and dynamic visual queries. In this subsection, the most significant visual-
ization capabilities of the PCP panel are highlighted.

3.1.1 Dynamic Visual Queries

Since the viewer is often interested in grouping subsets of data, a method to dynamically select lines
is provided for each axis. As shown in Fig. 2, each axis has a pair of sliders (the large black triangles)
which define the top and bottom range for the query area. Using the mouse cursor, the viewer can
drag these sliders to dynamically highlight different lines. Lines within the query area of every axis
are rendered with a more prominent, dark color while the remaining lines are rendered with a less
prominent, lighter shade of gray. In Fig. 1, an example of a dynamically created conjunctive query is
shown using the popular American Statistical Association (ASA) cars data set [4]. In this figure, car
records from more recent years (selected on the Year axis) are highlighted across the plot.
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Figure 2: An annotated view of the PCP axis display widget for the system highlighting the visual interaction
components and statistical indicators. The axis shown on the left illustrates the normal axis shading while the
axis on the right illustrates a highlighted, dependent axis shading.

3.1.2 Axis Scaling (Focus+Context)

The system’s dynamic axis scaling capability provides a method to interactively tunnel through the
data until a smaller subset of the original data is in focus. Our application allows the user to modify
the minimum and maximum focus area values for a selected axis using mouse wheel movement. As
shown in Fig. 2, each axis is partitioned into three sections delineated by horizontal tick marks: the
central focus area and the top and bottom context areas. When the mouse is hovering over the
focus area, an upward mouse wheel motion expands the display of the focus area outward and pushes
outliers into the context areas. A downward mouse wheel motion causes the inverse effect: focus region
compression. Alternatively, the user may use the mouse wheel over either of the two context areas to
alter the minimum or maximum values separately. The user may also manually enter the minimum
and maximum values by typing them in appropriate fields of the table view panel. As illustrated in
Fig. 3, this intuitive axis scaling capability helps to free space and reduce line clutter, thereby making
it easier to analyze relation lines of interest.

3.1.3 Aerial Perspective

The system offers an innovative line shading scheme that is useful for rapidly monitoring trends due
to the similarity of data values over multiple dimensions. This shading scheme simulates the human
perception of aerial perspective, whereby objects in the distance appear faded while objects nearer to
the eye seem more vivid. In this implementation, aerial perspective shading can be used in either a
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(a) Before Scaling (b) After Scaling

Figure 3: A screen shot of the parallel coordinates application before (a) and after (b) axis scaling has been
performed. In this example, scaling occurs by performing an upward mouse wheel function in the focus area of
the axis which moves the values for the top and bottom closer together, effectively stretching the display upward
and downward (with the base of the display fixed).

discrete or a continuous mode. In the discrete mode, the lines are colored according to the axis region
that they intersect. If any point of a relation line is in the context (non-focus) area of at least one axis,
the line is shaded with a light gray color and drawn beneath the non-context lines. If all the points on a
relation line fall within the query area of each axis (the area between the two query sliders), the line is
colored using a dark gray value that attracts the viewer’s attention and the remaining lines (non-query
and non-context) are colored a shade of gray that is slightly darker than the context lines but lighter
than the query lines. The resulting discrete shading effect is illustrated in Fig. 1.

In the continuous mode, non-context lines go through an additional step to encode the distance of
the line from the mouse cursor. As shown in Fig. 3 and Fig. 6(a), query lines that are nearest to the
mouse cursor receive the darkest value while lines farthest from the mouse cursor are shaded with a
lighter gray. The other query lines are shaded according to a non-linear fall-off function that yields a
gradient of colors between said extremes. Consequently, the lines that are nearest to the mouse cursor
are more prominent to the viewer due to the color and depth ordering treatments and the viewer can
effectively use the mouse to quickly interrogate the data set.

3.2 Statistical Analysis Capabilities

3.2.1 Descriptive Statistical Indicators

To support the interactive analysis capabilities of the system, each axis offers visual representations
of key descriptive statistics, identified in Fig. 2. The median, interquartile range (IQR), and the
frequency information are calculated for the data in the focus area of each axis. Alternatively, the user
can configure the system to display the mean and standard deviation range. These central tendency
and variability measures provide a numerical value that indicates the typical value and how “spread
out” the samples are in the distribution, respectively. The overall box plots represent the descriptive
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statistics for all the axis samples, while the query box plots capture the descriptive statistics for the
samples that are selected with the axis query sliders. In each axis interior, the frequency information is
also displayed by representing histogram bins as small rectangles with gray values that are indicative
of the number of lines that pass through the bin’s region (see Fig. 2). That is, the darkest bins have
the most lines passing through while lighter bins have fewer lines. In Fig. 3, the histogram display is
illustrated during an axis scaling operation.

3.2.2 Correlation Analysis Indicators

In statistics, correlation analysis attempts to measure the strength of relationships between pairs of
variables. The relationship between two variables can be quantified using a single number, r, that is
called the correlation coefficient. Specifically, the system uses the Pearson product-moment correlation
coefficient (also called the sample correlation coefficient) to measure the correlation for a series of n
measurements of X and Y written as xi and yi where i = 1, 2, . . . , n [21]. r is given by:

r =
n

∑
xiyi − (

∑
xi)(

∑
yi)√

[n
∑
xi

2 − (
∑
xi)2][n

∑
yi

2 − (
∑
yi)2]

(1)

There are two directions or types of correlation: positive and negative r. With a positive correlation,
as values of one variable increase, values of the other variable also increase. With a negative correlation,
as values of one variable increase, the values of the other variable decrease. Both positive and negative
correlations range in strength from weak to strong. A value of zero will occur when the sample
points show no linear relationship, the weakest correlation. A perfect linear relationship, the strongest
correlation, appears in the sample data when r = ±1, where +1 is a perfect positive relationship and
−1 is a perfect negative relationship. In practice, r is rarely perfect as it usually lies somewhere between
−1 and +1 [21].

The system computes r for each pair of axes in the display, which results in a correlation matrix.
As shown in Fig. 2, the rows from this correlation matrix are displayed graphically beneath each axis
as a series of color-coded blocks. Each block uses color to encode the sample correlation coefficient
between the axis directly above it and the axis that corresponds to its position in the set of blocks. For
example, the first block in the correlation indicators under each axis in Fig. 1 represents the correlation
strength between the axis above it and the first axis, the Cylinders axis. When the mouse hovers over
an axis in the PCP panel, the axis is highlighted and the correlation coefficient blocks corresponding to
it below the other axes are enlarged (see Fig. 2). The blocks are colored blue for negative correlations
and red for positive correlations. The stronger the correlation, the more saturated the color so that
stronger correlations are more prominent. Moreover, when the absolute value of a correlation coefficient
is greater than or equal to the significant correlation threshold, the block is colored with the fully
saturated color. The significant correlation threshold is a user defined value that is also displayed at
the bottom of the PCP (see Fig. 1).

In addition to the sample correlation coefficient indicators, the system also displays small scatter-
plots below the correlation indicators for each axis when an axis is highlighted (see Fig. 2). These
scatterplots are created by plotting the highlighted axis values along the y axis and the values from
the axis directly above the plot along the x axis of the scatterplot. Each scatterplot also shows the
numerical r value associated with the pair of axes. The scatterplots provide a visual means to quickly
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confirm the type of correlation (positive or negative) and the strength of the correlation. It is impor-
tant to note that the type of correlation is also visually detectable in the line configuration of the PCP
plot. Unlike the other correlation indicators, the scatterplot is useful for discovering nonlinear relation-
ships between variables. For example, a nonlinear relationship can be observed in a scatterplot even if
the correlation coefficient is zero. In Fig. 1, nonlinear relationships are illustrated in the scatterplots
beneath the second, third, and fourth axes.

3.2.3 Statistical Regression Analysis Capabilities

Regression analysis is often employed to identify the most relevant relationships in a particular data set.
Such techniques are effective for screening data and providing quantitative associations. In addition
to simple linear regression (SLR), the system offers stepwise multiple linear regression (MLR) with a
backwards glance which selects the optimum number of the most important variables using a predefined
significance level [21]. Stepwise regression can complement multivariate visualization by isolating the
significant variables in a quantitative fashion. Our system executes a MATLAB script and captures
output from the MATLAB’s “regress” and “stepwisefit” utilities that perform simple and stepwise
regression, respectively. The MATLAB output stream is then parsed and displayed graphically within
the PCP panel.

A normalization procedure is also used in the MLR analysis so that equal comparison between the
variables can be done. Denoting σ as the standard deviation of a variable, y as the dependent variable,
x as the predictor mean, and y as the dependent variable mean, a number k of statistically significant
predictors are normalized by the following regression:

(y − y)/σy =
k∑

i=1

bi(xi − xi)/σi (2)

Two advantages of this approach are that the importance of a predictor may be assessed by comparing
regression coefficients bi between different variables, and that the y-intercept becomes zero.

With the MLR analysis, extra steps are taken to ensure the proper selection of variables. The
initially chosen variables are examined for multicollinearity using an automatic filter; if any variables
are correlated with each other by more than the significant correlation threshold, one is removed. In
this way, the chosen variables are truly independent of each other.

As shown in Fig. 2, the system visually encodes b in the PCP panel using the box below the axis
label and to the left of the arrow. Like a thermometer, the box is filled from the bottom to the top
based on the magnitude of b. The box is colored red if the coefficient is positive and blue if it is negative.
The box to the right of the arrow encodes the r2 output from the SLR process. In addition to the
coefficients, bi, the MLR analysis returns an overall R2 value which provides a quantitative indication
of how well the model captures the variance between the predictors and the dependent variable. The
box beneath the dependent variable axis encodes the overall R2 value from the MLR analysis.

When these boxes are filled with a light gray ‘X’ (see Fig. 6), the value is not defined (the SLR or
MLR process has not been executed) or, in the case of the MLR analysis, the variable was excluded
during the selection process. It is also important to note that the axis corresponding to the dependent
variable is indicated by light gray text on a dark gray box for its title, the reverse shading of the other
axes. The dependent axis shading is illustrated by the IH axis in Fig. 2.
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Figure 4: System context diagram depicting the workflow for using the PCP system to execute a formal climate
study of real-world environmental parameters.

In addition to the multicollinearity filter, the system allows the user to automatically execute the
MLR and SLR processes. Furthermore, the system can automatically arrange the axes using the value
of b or r2 from the MLR and SLR analysis, respectively.

4 Enhanced Visual Statistical Analysis Workflow

The visualization capabilities and statistical processes offered by the system provide a unique environ-
ment for performing complex multivariate data analysis. During the system development and testing, a
systematic workflow was formulated to guide the scientist. In this section, the workflow that is depicted
in Fig. 4 will be described. Although this workflow is described in a sequential order, typical analysis
involves several iterations and moving between the various processes.

After preparing and loading the data set into the system, the scientist will manually filter the
display to remove unnecessary axes. Then, the scientist will manually arrange the variable axes and
interact with the display using the previously mentioned visual query techniques. During this initial
exploratory analysis, the scientist will acquire a preliminary overview of the entire data set.

Next, the scientist will observe the statistical correlations in the data using the correlation analysis
processes and indicators. The system’s automated axis arrangement tools can be used in this stage
to highlight strong correlations and compare IQR ranges in the data. To prepare for the regression
analysis, the scientist can manually reduce multicollinearity by using the correlation indicators to
identify and filter correlated variables using a predefined significance level. The scientist can also
utilize the automatic multicollinearity filter to ensure that the predictors are truly independent of one
another. Removing the strongly correlated independent variables will ultimately improve the MLR
analysis by avoiding over-fitting the data. The scientist will gain additional insight in this phase by
observing correlations between the predictors as well as correlations between each predictor and the
dependent variable.
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After the correlation analysis, the scientist will use the integrated SLR processes. This capability
provides an alternative indication of the individual associations between the predictors and the depen-
dent variable. The scientist may glean additional insight from this exercise to determine if additional
variables should be removed from the view. Then, the scientist is ready to execute the MLR processes
in order to quantify the significance of the predictors to the dependent variable. The result of this
process is a ranked list of the most important variables for the dependent variable. Unlike the SLR and
correlation analysis, the MLR analysis considers the contribution in relation to the other predictors.

By following this workflow, the scientist will develop new ideas about how the specific variables can
be used to predict the dependent variable. That is, the scientist will have formed hypotheses about the
associations between the variables. Then, the scientist can continue to explore the data in the system
to attempt to prove or disprove the new hypotheses; a process that Tukey [22] calls confirmatory data
analysis. For example, the scientist may discover patterns in the climate data that will help predict
the hurricane activity in 2005 based on the analysis of data from 1950 to 2006. If the theory holds
after this testing, the scientist may use the new insight to predict future hurricane activity.

5 Effectiveness Evaluation: A Hurricane Climate Study

The visualization system, concepts, and analysis workflow have been evaluated in a hurricane climate
study. The primary objective of this study was to discover the most important predictors for seasonal
intense hurricane activity in the North Atlantic to improve forecasting skill. The secondary objective
is to identify additional associations between predictors and temporal patterns in the data. In the
remainder of this section, the environmental data set and evaluation results are described.

5.1 Climate Study Data

In this climate study, a data set that contains potential environmental predictors observed annually
from 1950 to 2006 (57 records) has been analyzed. Table 1 lists the 16 potential environmental pre-
dictors from this data set along with their geographical region. This data set was provided by Phil
Klotzbach [23] of the Tropical Meteorology Project at Colorado State University, and it is used to pre-
dict North Atlantic tropical cyclone activity for the upcoming storm season by categories. Although
many categories are considered in practice, the focus of this study is on the number of intense hurri-
canes (IH) in a hurricane season. A hurricane is classified as intense when its sustained low-level winds
are at least 111 mph [24]. Although intense hurricanes account for just over 20% of the tropical storms
and hurricanes that strike the United States, these storms warrant special attention because they are
responsible for over 80% of the damage [25].

These variables have known relationships to Atlantic tropical cyclone activity. For example, Chu [26]
describes how the North Atlantic basin has fewer tropical cyclones during El Niño Southern Oscillation
(ENSO) years, and active seasons in La Niña years. Because of this relationship, scientists use ENSO
signals as some predictors of seasonal storm activity. In Table 1, variables 1 through 8 are believed to
characterize ENSO events.

5.2 Initial Insight (Overview)

After loading the predictors and seasonal storm statistics, the visual analysis tools are used to explore
the data set and rearrange the axes. A portion of this initial view is shown in Fig. 5. The first notable
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Table 1: Tropical cyclone climate variables evaluated as predictors in the climate study.

Variable Name Geographical Region

(1) June–July Niño 3 5S-5N, 90-150W
(2) May SST 5S-5N, 90-150W
(3) February 200-mb U 5S-10N, 35-55W
(4) February–March 200-mb V 35-62.5S, 70-95E
(5) February SLP 0-45S, 90-180W
(6) October–November SLP 45-60N, 120-160W
(7) Sept. 500-mb Geopotential Height 35-55N, 100-120W
(8) November SLP 7.5-22.5N, 125-175W
(9) March–April SLP 0-20N, 0-40W

(10) June–July SLP 10-25N, 10-60W
(11) September–November SLP 15-35N, 75-97W
(12) Nov. 500-mb Geopotential Height 67.5-85N, 50W-10E
(13) July 50-mb U 5S-5N, 0-360
(14) February SST 35-50N, 10-30W
(15) April–May SST 30-45N, 10-30W
(16) June–July SST 20-40N, 15-35W

SST – Sea Surface Temperature
SLP – Sea Level Pressure

observation is that most of the predictors have low variability (evident by the relatively small overall
IQRs) except for the July 50 mb Equatorial Wind (U) around the globe (13) predictor (the last axis
in Fig. 5). Since the objective is to use the climate variables to predict inactive or active seasons,
the overall axis box plot is used to identify the seasons with normal IH activity. That is, the seasons
that cross the axis within the box plot are considered normal. Then, the query sliders are used to
investigate the behavior of each axis in active (above normal) and inactive (below normal) seasons. In
Fig. 5, the active (a) and inactive (b) IH seasons are highlighted. Focusing on the narrower query box
plots reveals that some variables, such as June–July SLP in the tropical Atlantic (10) and November
500 mb Geopotential Height in the far North Atlantic (12), exhibit significantly different behavior in
active versus inactive seasons. That is, in active years, the values for (10) are low and the values for
(12) are high whereas the opposite conditions are observed in inactive years.

In addition, a gap is visible on the Year axis (the first axis in Fig. 5 (a)) for the active seasons. From
1960 to 1994, a relatively quiet period is observed since there are no seasons with an above normal
number of intense hurricanes. What’s more, Fig. 5 (b) shows that the inactive seasons are clustered
into this same time of normal or below normal activity. This visual observation agrees with findings
published in the weather research literature [19, 25, 27] that suggest a strong multidecadal variability
in the number of intense hurricanes per year in the North Atlantic.
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(a) Active IH seasons.

(b) Inactive IH seasons.

Figure 5: A portion of the initial PCP of the intense hurricane seasons partitioned by activity. The active
seasons are highlighted in (a) while the inactive seasons are highlighted in (b). From 1960 to 1994, a gap in the
seasons with above normal intense hurricane activity is revealed in (a) and the below normal seasons fill this gap
in (b).

5.3 Correlation Analysis

To prepare for the MLR analysis and to address the secondary objective of the study, the correlations
between the axes are investigated by arranging the 16 axes by the correlation coefficient with the IH
axis. The correlation indicators reveal that the strongest correlations with the IH axis are June–July
SLP in the tropical Atlantic (10) and November 500 mb Geopotential Height in the far North Atlantic
(12) — the axes directly to the left and right of IH in Fig. 7, respectively. More specifically, the
enlarged color-coded correlation indicator box, PCP polyline ‘X’-shaped crossings, downward slope in
the scatterplot, and numerical display of r in this plot reveal that axis (10) has the strongest negative
correlation. Likewise, the strongest positive correlation with axis (12) is evident by the correlation
indicator, the more parallel PCP polyline configuration, the upward slope of the scatterplot, and the
numerical display of r.

The image sequence shown in Fig. 6(a) illustrates the use of the continuous aerial perspective
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(a) SLP Correlations

(b) SST Correlations

Figure 6: Correlation analysis can be performed rapidly using the shading and statistical indicators. In (a) a
sequence of images demonstrates how the aerial perspective shading can be used to analyze the SLP variable
correlations by moving the mouse from the top to the bottom of the axis. In (b), the correlations between the 4
SST variables are examined revealing the strong positive correlation of variable (15) with both (14) and (16).

shading capability to investigate a strong negative correlation between October–November SLP in the
Gulf of Alaska (6) and November SLP in the Subtropical NE Pacific (8) axes. This intuitive visual
query technique, which shades the polylines according to their proximity to the mouse cursor, highlights
the ‘X’-shaped polyline crossings between the axes, which is indicative of a negative correlation in a
PCP.

In Fig. 6(b), the correlations between three SST variables and the April–May SST off the North-
western European Coast (15) variable are shown. In the PCP, strong correlations are identified when
|r| ≥ 0.5, the significant correlation threshold, and visually by a fully saturated correlation indicator.
This plot reveals that a relatively strong positive correlation exists between axis (15) and both the
February SST off the Northwestern European Coast (14) and the June–July SST in the Northeastern
Subtropical Atlantic (16) axis. Meanwhile, the May SST in the eastern equatorial Pacific (2) variable
exhibits almost no correlation (r = .02). To reduce the multicollinearity between the SST predictors,
axis (14) and (16) must be removed since they have a strong correlation with axis (15) and axis (15)
has a stronger correlation with the IH axis (see Fig. 7). Removing these and any other variables with
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Figure 7: The resulting axis arrangements after applying the multicollinearity filter to ensure independence
between the predictors. The axes have been automatically arranged according to the strength of the correlation
between the predictors and the dependent axis. Negatively correlated axes are placed to the right of the dependent
axis, IH, while positively correlated axes are placed to the left.

strong correlations between predictors will ensure the independence of the predictors and thus improve
the MLR analysis results.

Before removing axis (14) and (16), the physical relationships between these variables can be con-
sidered in order to investigate the cause of the strong correlation. From the geographic extents of these
variables listed in Table 1, one can observe that the 3 predictors with strong correlations are all sampled
in the North Atlantic Ocean. However, axis (2), which exhibits a very weak correlation, is measured
in the Pacific Ocean. Therefore, the strong correlations among axis (14), (15) and (16) can be mostly
attributed to the close geographical proximity of the measurements whereas the low correlation of axis
(2) can be attributed to the fact that it is measured in the Pacific ocean.

The scientist can continue to manually find and eliminate the highly correlated predictors, or use
the system’s automatic multicollinearity filter. Applying this filter to the climate data set removes
March–April SLP in the eastern tropical Atlantic (9) (because of its strong correlation with axis (10)),
axis (14) and (16) (strong correlation with axis (15)), November SLP in the Subtropical NE Pacific
(8) (strong correlation with October–November SLP in the Gulf of Alaska (6)), June–July Niño 3 (1)
(strong correlation with axis (2)), and February 200 mb zonal wind (U) in Equatorial East Brazil
(3) (strong correlation with February SLP in the Southeast Pacific (5)). In Fig. 7, the resulting axis
configuration is shown, automatically arranged by the correlation coefficient with the IH axis. In
this plot, it is clear that the only remaining r values greater than the significant correlation threshold
(visually indicated by the fully saturated fill color in the enlarged correlation indicators) are the two
axes on either side of the IH axis; but these correlations are with the dependent axis which does not
affect the independence between the predictors.

5.4 Identifying Most Important Predictors

Using the system’s automatic SLR and stepwise MLR processes, the predictors are automatically
analyzed to determine the most important predictors with respect to the number of intense hurricanes
in a season. In Fig. 8, the results of the MLR and SLR analysis are shown. Here the predictors are
arranged according to the magnitude of the MLR coefficient, b. The significance level in the stepwise
regression analysis was 80%.
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Table 2: Significant climate variables for number of intense hurricanes in 1950–2006.

Number of Intense Hurricanes (IH)
(R2 is 58% and Adjusted R2 is 54%)

Chosen Variables Normalized Sample Mean
Coefficients b

Nov. 500-mb Geopot. Ht. (12) 0.3524 5213.38
June–July SLP (10) –0.3121 1016.23
Sep. 500–mb Geopot. Ht. (7) 0.2514 5753.33
Feb.–Mar. 200-mb V (4) –0.1871 2.53
Sep.–Nov. SLP (11) –0.1431 1014.98

The numerical results of the regression listed in Table 2 and the visual representation in Fig. 8
suggest that the five chosen variables are the most significant predictors for the number of intense
hurricanes in a season. Highlighting the active and inactive ranges in Fig. 8 also reveals how each
specific variable behaves in either active or inactive seasons.

In Fig. 9, the query sliders are used to highlight the points with high values on axis (12), low
values for axis (16), low values for axis (7), high values for axis (4), and low values for axis (11). This
plot reveals that using these axis ranges to predict the intense hurricanes of a season would result
in successfully identifying 11 of the 14 seasons (74%) that had a high number of intense hurricanes
between 1950 and 2006. On the other hand, using this technique might result in missing 3 above
normal activity seasons (with 7, 6, and 5 intense hurricanes). In particular, one of the storm seasons
that is not selected by this query is the infamous 2005 hurricane season which had 7 intense hurricanes,
including the cataclysmic Hurricane Katrina. Using the visual query capabilities, minor adjustments
can be applied to the query sliders of the significant predictors to ensure that all 14 seasons with active
intense hurricane activity are captured. Then, these numerical predictor ranges can be used to predict
the activity of future tropical cyclone seasons with respect to the number of intense hurricanes.

5.5 Confirmatory Analysis

To be complete, the physical relationships of the selected predictors can be evaluated to ascertain the
validity of the selections from a weather science perspective. Although a detailed physical evaluation
is beyond the scope of this article, the selections of these five predictors can be validated by briefly
describing how each variable influences the development of tropical cyclones.

The most significant predictor, axis (12), measures the the long-term oscillations which impact
global wind patterns, known as teleconnections. When these oscillations are in one phase, they cause
more ridges in the Atlantic, which corresponds to less wind shear. Also, weaker zonal winds in the
subpolar areas are indicative of a relatively strong thermohaline circulation and therefore a warmer
Atlantic Ocean. The MLR results indicate that when predictor (12) is normal or above normal, the
environment is more favorable for the development of intense hurricane systems.

Pressure in the Atlantic Ocean is inversely related to tropical cyclone activity; low sea-level pressure
in the tropical Atlantic implies increased atmospheric instability, moisture, and ascent (more favorable
for the genesis of tropical cyclones), and weaker trade winds (which correspond to less wind shear that
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(a)

(b)

Figure 8: Results of the MLR analysis showing the axes arranged in descending order based on the MLR result
coefficient, b. In (a) the active seasons are highlighted and in (b) the inactive seasons are highlighted. The
query box plots in (a) are always entirely above or below the overall median for each axis which reinforces the
predictability of these variables with respect to intense hurricane activity.

can tear up the thunderstorms in tropical cyclones). This relationship explains the selection of axis
(11) and axis (10), which are normal or below normal in the active intense hurricane seasons.

The MLR analysis also identified two variables that characterize El Niño events which inhibit
tropical cyclone formation and intensification in the Atlantic. The first clues of an impending El Niño
can be detected in February by observing three variables. The MLR analysis selected one of these
variables, axis (4), which measures the anomalous late winter north-south winds at 200 mb in the
southern Indian Ocean (a condition associated with El Niño). As shown in Fig. 9, normal to below
normal values of (4) correspond to more favorable conditions for intense hurricane development. The
MLR model includes one Fall variable that is correlated to El Niño conditions for the following year,
axis (7), which is more favorable for hurricane intensification in normal to above normal measurements.
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Figure 9: The query sliders and the MLR results are used to highlight the ranges of the most important
predictors. The dynamic query capabilities of the system are exploited to interactively confirm the theory that
these predictor ranges can be used to forecast intense hurricane activity.

6 Conclusion

This research has demonstrated that interactive parallel coordinates, a visualization technique designed
specifically for complex multivariate information, can be used in conjunction with advanced statistical
analysis to discover and confirm hypotheses. While the regression analysis yields an ordering of the
most important predictors, the dynamic visual analysis capabilities of the system facilitate a deeper
understanding of the associations. Using traditional analysis alone would require the examination
of 136 scatterplots to observe the same associations in the data that are efficiently captured by the
interactive visualization system presented in this paper.

During the development and evaluation of the visualization system, a systematic workflow for
analyzing complex climate study data has been formulated. Using this workflow, the effectiveness of
the concepts that emerged in this research are demonstrated in a real-world case study to identify the
most significant predictors for the number of intense hurricanes in a hurricane season. In the future,
these results will be expanded to include additional seasonal statistics and climate study data sets.
In addition, new multivariate visualization capabilities will be developed that enhance the study of
climate data, thus giving researchers a more effective visual alternative for understanding the climate.
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