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Figure 1. This figure provides an overview of EDEN during analysis of a global CLM4 data set. The CLM4 filter panel (left) facilitates interactive
queries into large CLM4 data sets. The VisFrame (right) offers a highly interactive, visual interface to explore multivariate relationships via linked
parallel coordinates, scatterplots, correlation matrix, and geographic scatterplot visualizations.

ABSTRACT
Given the scale and complexity of today’s data, visual analyt-
ics is rapidly becoming a necessity rather than an option for
comprehensive exploratory analysis. In this paper, we pro-
vide an overview of three applications of visual analytics for
addressing the challenges of analyzing climate, text streams,
and biosurveilance data. These systems feature varying lev-
els of interaction and high performance computing technol-
ogy integration to permit exploratory analysis of large and
complex data of global significance.
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INTRODUCTION

Most existing analysis and visualization tools permit the in-
vestigation of gigabyte to terabyte data only through dras-
tic reductions informed by the domain expert’s experience
and intuition. However, in the process of subsetting the
data, information is severely truncated and discarded, which
makes analysis more difficult, uncertainty quantification less
tractable, and serendipitous discoveries nearly impossible.
Meanwhile, technological advances are enabling higher reso-
lution, fidelity, and complexity in domains such as climate
simulations, unstructured information stream analysis, and
bio-surveillance, fueling an escalation to extreme scale data
sets. Therefore, we continue to disproportionately outpace
our ability to analyze data in a systematic, exploratory man-
ner, thereby postponing the next round of great scientific
breakthroughs.

It is clear that a new approach is necessary, but what is the



key to enabling change? As stated in the 2013 Department
of Energy’s Advanced Scientific Computing Advisory Com-
mittee (ASCAC) Challenges Report, perhaps the most sig-
nificant ingredient lies within ourselves: “Analysis and vi-
sualization of increasingly larger-scale data sets will require
integration of the best computation algorithms with the best
interactive techniques and interfaces. We must pay greater at-
tention to human computer interface design and human in the
loop workflows.” [2] This statement is just one example of
the growing recognition that we must evolve from the current
machine-centered paradigm to one that is human-centered,
thereby exploiting the scientists’ extremely high bandwidth
visual processing channel and cognitive capabilities. Further-
more, the vast majority of scientific analysis and visualization
research has been devoted to scientific visualization, where
spatial representations are normally provided. However, ab-
stract attributes and hyper-dimensionality dominate many of
the extreme scale science domains and scientific visualiza-
tion, in its purest form, doesn’t accommodate such data. In
order to usher in the next round of great scientific advances,
a new class of interactive visualization and analysis tech-
niques is needed that effectively and seamlessly couples the
strengths of humans with the computational advances of ma-
chines for information-assisted, human-centered analysis in
extreme scale domains.

Information visualization refers to “the use of computer-
supported, interactive, visual representations of abstract data
to amplify cognition” [1]. Information visualization formed
out of the scientific visualization community to address the
rapidly increasing volume and complexity of abstract data
and has demonstrated success in enabling more efficient anal-
ysis in such fields as biomedical, cyber-security, and intelli-
gence. There is tremendous potential in applying information
visualization techniques to extreme scale science, particularly
applications that harness the massive parallelism of emerging
HPC technologies.

A related field is visual analytics, which refers to the “sci-
ence of analytical reasoning facilitated by interactive visual
interfaces” [12]. The fundamental goal of visual analytics
is to turn information overload into opportunity by visually
representing the information and allowing humans to directly
interact with it to gain insight, draw conclusions, and make
better decisions. The advantage of visual analytics is that
users can focus their full cognitive and perceptual capabili-
ties on the analytical process, while simultaneously applying
advanced computational capabilities to augment the discov-
ery process [5].

Both information visualization and visual analytics have
demonstrated great promise in amplifying knowledge discov-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
4th SC Workshop on Petascale (Big) Data Analytics, Nov. 17, 2013, Denver,
Colorado, USA.
Copyright 2013 ACM 978-1-4503-1015-4/12/05...$10.00.

Figure 2. ORNL climate researchers Dan Ricciuto (left) and Peter
Thornton (right) are shown using the EDEN visual analytics tool to
explore multivariate relationships in Community Land Model Version
4 (CLM4) simulations. The analysis is being performed using the 35
mega-pixel display wall in the ORNL EVEREST visualization labora-
tory, a unique resource of the Oak Ridge Leadership Computing Facility
(OLCF).

ery and cognition in a variety of fields such as intelligence
and bioinformatics, but the application of these techniques
in extreme scale science is rare. A significant proportion
of today’s scientific data exhibit abstract attributes, hyper-
dimensionality, and unstructured attributes that are all ideally
suited to an information visualization approach. Furthermore,
calls for processing methods (especially those that involve in-
situ analysis) that integrate the “the best computational algo-
rithms” and “interactive techniques and interfaces” can only
be addressed through a superior visual analytics approach [2].
Algorithmic advances offer much promise to scientific anal-
ysis, but the disruptive impact of said techniques in extreme
scale science is necessary to realize the full potential of the
abundant data and high-end computing resources in DOE sci-
ence mission areas.

In this paper, we will provide an overview of three visual an-
alytics approaches that rely heavily on interactive informa-
tion visualization techniques for human-centered analysis of
large scale data. First, we will discuss a novel climate visual
analytics system, called EDEN, that works with HPC archi-
tectures and fosters more creative analysis of earth system
simulations and ensemble analysis. Next, we will give an
overview of a text visual analytics system that permits inter-
active analysis of high throughput unstructured information
streams for situation awareness of global events. Then, we
will conclude with an overview of a bio-surveillance project
for analyzing epidemiological model data sets to understand
and control disease spread and outbreak. These systems fea-
ture various levels of interaction with high performance com-
puting (HPC) platforms and deal with so-called “big data”
problems of global significance.

CLIMATE VISUAL ANALYTICS
The Exploratory Data analysis ENvironment (EDEN) is a vi-
sual analytics system that is designed to support hypothesis
formulation and testing with complex, multivariate climate
simulation data sets, particularly data produced by the Com-



Figure 3. This figure shows an overview of the Matisse visual analytics framework for interactively exploring streaming unstructured information
using visual representations. The framework supports the ability to drill down to higher resolution details in the data using mouse gestures and is fed
by a near real-time analytics engine that consumes and summaries the streaming content. Matisse has been utilized for analyzing social media, news
feeds, and similar text streams.

munity Land Model Version 4 (CLM4) [6]. Unlike conven-
tional climate analysis tools, EDEN employs a highly inter-
active, information visualization canvas to connect the scien-
tist to the data behind the representations, as shown in Fig-
ure 1. EDEN has been developed in close collaboration with
leading climate scientists (one of which is a co-author of the
current work) and together we have published comprehensive
case studies that corroborate the notion that a visual analytics
approach leads to more efficient data analysis in real-world
climate studies [10, 11]. In Figure 2, two ORNL climate re-
searchers are shown using EDEN for collaborative analysis
on the Oak Ridge Leadership Computing Facility’s (OLCF)
EVEREST display wall.

At the heart of EDEN is a highly interactive variant of parallel
coordinates—a popular multivariate visualization technique
that is well-suited to the analysis of large multivariate data
sets. The parallel coordinates technique was initially popular-
ized by Inselberg [3] as an approach for representing hyper-
dimensional geometries, and later demonstrated in multivari-
ate analysis by Wegman [13]. In general, the technique yields
a compact 2-dimensional representation of even large multi-
dimensional data sets by representing theN -dimensional data
tupleC with coordinates (c1, c2, . . . , cN ) by points onN par-
allel axes which are joined with a polyline [4].

EDEN augments the classical parallel coordinates plot by
providing cues to guide the analyst’s exploration of the in-
formation space. This approach is akin to the concept of
the scented widget described by Willett et al. [14]. Scented
widgets are graphical user interface components that are aug-
mented with an embedded visualization to enable efficient
navigation in the information space of the data cases. In
EDEN, the parallel coordinates plot is extended with a num-
ber of capabilities that facilitate exploratory data analysis and
guide the scientists to the most significant relationships in the
data. Correlation mining, coordinated scatterplots, and em-
bedded visualization are also used to graphically encode key
statistical quantities. For a more detailed discussion of the
techniques introduced in EDEN the reader is directed to our
previous work [10].

EDEN is currently used by climate researchers to analyze
global simulations and point simulations ensembles. In sev-

eral practical case studies [10,11] we have demonstrated how
EDEN improves the efficiency of climate analysis. EDEN
permits exploration of high dimensional spaces without the
loss of information. In some cases, EDEN has enabled lev-
els of analysis that were previously impossible, such as the
simultaneous display of 88 dimensions from a CLM4 ensem-
ble. EDEN has also helped climate researchers find new rela-
tionships that they never anticipated or considered exploring
before such as particular input parameter sensitivities [11].
EDEN has been adopted by a wide range of climate scientists
throughout the world and it is available for free download1.
Although it has been evaluated most extensively in climate
analysis, EDEN is a general multivariate analysis tool that
supports any domain through a general CSV file ingest fea-
ture.

TEXT STREAM VISUAL ANALYTICS
With more than 140 million active users, each day Twitter
produces more than 340 million posts (called tweets), which
are limited to 140 characters. Twitter is just one example of
many social media systems that are transforming the way our
society functions. Techniques for analyzing broad trends over
social media data or detailed analysis within small subsets
have been demonstrated in recent years, but state-of-the-art
tools are mostly inadequate at supporting near real-time anal-
ysis of these high-throughput streams of unstructured infor-
mation.

We have developed a framework, accessible by a highly in-
teractive visual analysis tool called Matisse (see Figure 3), to
help detect and analyze global events and trends in large scale
text streams like those produced by social media systems.
The framework integrates a unique collection of modules that
support sentiment analysis, change detection, identification of
key associations, and automatic discovery of spatio-temporal
patterns.

Efficient management of streaming textual information is
paramount to our objective of enabling interactive visualiza-
tion and analysis. Our system continuously consumes and
indexes streams from multiple platforms using a variety of
modern database formats that support interactive process-
ing. The system can consume Twitter sample streams and
1http://cda.ornl.gov/projects/eden/



RSS news feeds directly, but is sufficiently general to sup-
port any unstructured information stream (e.g. system sta-
tus logs). These streams are characterized by high velocity,
high throughput information flow. Our system processes new
items in near real-time using a fault-tolerant, stream process-
ing engine that identifies similarities, trends, and estimates
sentiment in the stream. This backend processing engine
can segment the stream into sub-topics that are defined by a
unique vector of terms or phrases for more focused awareness
of key concepts.

To analyze the information, Matisse utilizes a highly interac-
tive canvas (see Figure 3) for graphically depicting the cur-
rent (and past) state of activity in the stream. Matisse uti-
lizes a coordinated multiple view approach whereby changes
in one display are propagated to the other displays, appro-
priately. Furthermore, the display supports focused analysis
while also providing higher level contextual views for more
particular investigations. In the remainder of this section, we
will provide detailed descriptions of the various visualization
techniques.

Matisse aggregates summary statistics for a pre-defined unit
of time (e.g. seconds, minutes, hours) to form a time se-
ries. This time series is used to build a temporal visualization
which represents the summary metric as a chart. The chart
can encode a single value over time or it can be partitioned to
show two or more metrics. For example, in Figure 3 the dis-
play is split to show positive tweets as the top graph of blue
bars and negative tweets as the bottom graph of orange bars
with a common baseline. The height of each bar indicates of
the frequency of tweets having positive or negative sentiment
at the point in time. Users may select time ranges of inter-
est directly in the temporal graph and the other views will be
updated, appropriately.

Matisse also provides an interactive geospatial heatmap for
the selected time range. The color scale used in the map rep-
resents grid cells with higher tweet counts as darker and more
saturated shades of blue and lower tweet counts as lighter
and less saturated shades of blue. Areas with higher activity
are therefore, presented in a more visually salient manner to
highlight relative activity. The map can be used to visualize
overall frequency, positive frequency, or negative frequency
in the current version. Furthermore, additional derived statis-
tical metrics can be created and visualized in the map view.
Users can also select a geospatial region in the map view to
set a spatial query for tweets in the area.

At right of the geospatial view, the term view shows the most
frequently occurring terms for the selected time and spatial
location. These top terms are calculated and stored in a sum-
mary object for the time unit of interest (e.g. minutes, hours).
To quickly render the top terms for the selected time range,
the top term summary information is then used to populate
the term view.

We have alluded to the linked views in Matisse whereby se-
lections in the various displays are propagated to the other
views. This coordinated multiple view model is combined
with the temporal focus+context display which shows the

overview of the complete time series with a detailed view of
the time unit of interest. In the geospatial map, the view pro-
vides additional interactions for zooming in/out of the display
and panning the viewpoint. Furthermore, the user can select
words of interest in the term view to query specific text that
contains the selected word(s). Selections in each of these pan-
els are used to set the filter/search criteria in the left hand filter
panel. With this tool, individual tweets can be queried to see
general text for tweets and aggregated statistics.

BIO-SURVEILLANCE VISUAL ANALYTICS
We have also applied a visual analytics approach to the do-
main of bio-surveillance. Using the parallel coordinates
based visualization capabilities of EDEN (see Figure 4), we
examined compartmental epidemiological models which are
used to model how diseases spread as well as strategies for
control during epidemics [9]. Compartmental models pro-
ceed by segregating a population into distinct groups:

Susceptible (S) – part of the population previously unex-
posed to the pathogen;

Infected (I) – part of the population affected by the pathogen;

Exposed (E) – part of the population that is infected by the
pathogen but not infectious;

Recovered (R) – part of the population that has successfully
been cured of the infection.

Compartmental models use ordinary differential equations to
model the various aspects of disease spread and control. For a
more detailed discussion of the models and our metamorphic
testing framework we encourage the reader to review our pre-
vious work [9].

The models produce a complex and massive record of data
that is difficult to explore efficiently. However, exploration
is required to determine relationships between variables and
identify the most significant sensitivities and associations.
We have applied the parallel coordinates based visual analyt-
ics methodology in EDEN to examine the parameter sweeps
and metamorphic testing results on the SIR/SEIR models. For
example, Figure 4 shows a dynamic visual query that was
formed interactively to select tuples with β = 1 and varying
γ from a minimum of 0.2 to a maximum of 0.5. From this
selection, it is evident that when the value of γ is higher than
β, there is no epidemic, as evidenced by the top lines in the
susceptible column of the plot. However, as γ values tend to
rise, there is a subsequent increase in the number of infected
and recovered populations. Thus, a visual scan of the param-
eter space allows us to visualize how γ and β are dependent
on each other and further allows us to examine the behavioral
properties of the SIR model in terms of when an epidemic
may prevail in the population. In the case of epidemiological
models, we found that parameter scanning along with data
exploration and visualization provides novel insights into the
behavioral properties of these models.

In addition to our work with epidemiological model analysis,
we are exploring ways to combine text mining, graph analy-
sis, and visual text analytics to conduct bio-surveillance using



Figure 4. The figure shows a novel visual analytics tool for exploring sensitivities in compartmental epidemiological models. By facilitating interactive
visual queries of the complex parameter space, scientists can explore the model outputs and develop insight about the conditions under which an
epidemic can occur.

social media [8]. One particular challenge in this work is de-
vising new algorithms to efficiently explore information from
diverse data streams that include both text and multi-media.
Such tasks are particularly relevant for tasks involving situ-
ational awareness. For example, a cursory search on the in-
ternet for flu yielded thousands of images (with annotated in-
formation), with additional textual information that could be
gathered from Twitter (with the same or similar annotations).
The Oak Ridge Bio-surveillance toolkit (ORBiT) [7] incor-
porates new new visual exploration techniques that enables
users to link information from multiple data sources. ORBiT
will also utilize the advanced text visual analytics algorithms
in Matisse.

CONCLUSION
Human-centered analysis is attractive for extreme scale sci-
ence applications because it takes advantage of the inherent
strengths of humans (e.g. high bandwidth visual processing
channel, creativity, and background knowledge). If we adopt
the visual analytics paradigm, we further increase the effec-
tiveness by combining the human strengths with the tremen-
dous computational capabilities of machines. The resulting
system is ideal for extreme scale analysis because the math-
ematical and statistical tasks are efficiently handled by ma-
chines whereas the visual pattern recognition tasks are ideal
for humans. Given the scale and complexity of today’s data in
areas such as climate, bio-surveillance, and social media net-
works, a visual analytics approach is perhaps the only viable
solution for exploratory analysis.

In the current work, we have provided an overview of three
key areas where we have applied the visual analytics ap-
proach to extreme scale analysis. For climate, the data is large
and occupies a complex multivariate space. Working with
leading domain scientists, we developed EDEN which has
proven to be very effective and is being used today for practi-
cal climate studies. We have also applied the visual analytics

paradigm to the near real-time analysis of social media text
streams. The mining of social media data has demonstrated
promise in natural disaster management and observing com-
munity resilience, as well as for detecting disease outbreaks.
Finally, we have explored the use of EDEN for more general
analysis of epidemiological models. Each of these applica-
tions share a common challenge of large and complex data.
In the case of social media, the data streams also exhibit high
velocity and high throughput characteristics with a need to
deal with items in near real-time.

In the future, we will investigate tighter linkages to the mas-
sively parallel facilities such as the OLCF, effectively con-
necting emerging HPC architectures to interactive visualiza-
tions for more intuitive, human-centered analysis. We will
also explore ways to harness newer, high resolution display
technologies, such at the 35 mega-pixel display wall in the
ORNL EVEREST visualization laboratory, a resource of the
OLCF. Visualization represents the interface between humans
and machines and anything we can do to improve that inter-
face will directly increase our ability to make sense of the vast
volumes of complex information that we face today.
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